Enhanced Formation of Thermal Donors in Germanium Doped Czochralski Silicon Pretreated by Rapid Thermal Annealing

Article Preview

Abstract:

The thermal donor formation at 425oC - 450oC in Ge doped Czochralski (GCZ) silicon having about 1016 cm-3 Ge content pretreated by rapid thermal annealing (RTA) and conventional furnace annealing (CFA) has been investigated using low-temperature infrared spectroscopy (LT-IR). The measurements prove that lightly Ge doping can enhance the formation of thermal double donors in the initial stage of the low temperature annealing after RTA process. Ge induced additional grown-in oxygen precipitates during silicon ingot growth and the abundant self-interstitials during RTA may be the reason for the enhancement. However, after extending the annealing time at the low temperatures, the thermal donor concentration in the GCZ silicon is lower than that in the conventional CZ silicon. In final, the mechanism is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

393-398

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. M. Carbonaro, V. Fiorentini, and F. Bernardini. Phys. Rev. B. Vol. 66 (2002), p.233201.

Google Scholar

[2] X. Yu, D. Yang, X. Ma, H. Li, Y. Shen, D. Tian, L. Li and D. Que, J. Cryst. Growth Vol. 250(2003), p.359.

Google Scholar

[3] D. Yang, X. Yu, X. Ma, J. Xu, L. Li and D. Que, J. Cryst. Growth Vol. 243 (2002), p.371.

Google Scholar

[4] T. Taishi, X. Huang, I. Yonenaga and K. Hoshikawa. Mater. Sci. in Semi. Proc. Vol. 5 (2003), p.409. 5. E. Hild, P. Gaworzewski, M. Franz and K. Pressel, Appl. Phys. Lett. Vol 72 (1998), p.1362.

DOI: 10.1063/1.121055

Google Scholar

[6] H. Li, D. Yang, X. Yu, X. Ma, D. Tian, L. Li and D. Que, J Phys: Condens Matter, Vol. 16 (2004), p.5745.

Google Scholar

[7] C. Cui, D. Yang, X. Ma, M. Li, D. Que, Mater. Sci. in Semi. Proc. Vol. 9 (2006), p.110.

Google Scholar

[8] C. S. Fuller, N. B. Ditzenberger, N. B. Hannay and E. Buchier, Phys. Rev. Vol. 96 (1954), p.833.

Google Scholar

[9] C. S. Fuller and R. A. Logan, J. Appl. Phys. Vol. 28 (1957), p.1427.

Google Scholar

[10] J. A. Griffin, J. Hartung, and J. Weber, Mater. Sci. Forum Vol. 619 (1989), p.38.

Google Scholar

[11] D. Yang, D. Que, K. Sumino, Appl. Phys. Lett. Vol. 77(1994), p.943.

Google Scholar

[12] A. R. Been and R. C. Newman: J. Phys. & Chem. Solids Vol. 33 (1972), p.255.

Google Scholar

[13] R. C. Newman, A. S. Oates and F. M. Livingston, J. Phys. C: Solid State Phys. Vol. 16 (1983), p. L667.

Google Scholar

[14] A. Misiuk, D. Yangb, B. Surma, C.A. Londos, J. Bak-Misiuk and A. Andrianakis, Materials Science in Semiconductor Processing Vol. 9 (2006), p.82.

DOI: 10.1016/j.mssp.2006.01.031

Google Scholar

[15] P. Wagner and J. Hage, Appl. Phys. A: Solid. Surf. Vol. 49(1989), p.123.

Google Scholar

[16] J. Chen, D. Yang, H. Li, X. Ma and D. Que, J. Cryst. Growth Vol. 291 (2006), p.66.

Google Scholar

[17] H. J. Stein, S. K. Hahn and S. C. Shatas, J. Appl. Phys. Vol 59(1986), p.3495.

Google Scholar

[18] V. V. Voronkov, G. I. Voronkova, A. V. Batunina, V. N. Golovina, M. G. Mil'vidskii, A. S. Gulyaeva, N. B. Tyurina and L. V. Arapkina, Phys. Sol. Stat. Vol. 42(2000), p. (2022).

DOI: 10.1134/1.1324035

Google Scholar

[19] U. Gosele and T. Y. Tan, Appl. Phys. A: Solids Surf. Vol. 28(1982), p.79.

Google Scholar

[20] L. I. Murin, T. Hallberg, V. P. Markevich and J. L. Lindstrom, Phys. Rev. Lett. Vol. 80(1998), p.93.

Google Scholar

[21] S. Oberg, C. P. Ewels, R. Jones, T. Hallberg, J. L. Lindstrom, L. I. Murin and P. R. Briddon , Phys. Rev. Lett. Vol. 81(1998), p.2930.

Google Scholar

[22] D. Aberg, B. G. Svensson, T. Hallberg and J. L. Lindstrom, Phys. Rev. B. Vol. 58(1998), p.12944.

Google Scholar

[23] L. C. Snyder, J. W. Corbett, P. Deak, and R. Wu, Mater. Res. Soc. Symp. Proc. Vol. 104(1988), p.179.

Google Scholar