Analysis of Possibilities of Fisher’s Model Development

Article Preview

Abstract:

The possibilities of Fisher’s model development and generalization are considered, as this model in its classical form contradicts some experimental results. Particularly, it does not explain such a phenomenon, observed in Mössbauer studies, as the transfer of grain-boundary diffusing atoms into near-boundary crystallite areas at temperatures when the volume diffusion is admittedly frozen. Different models explaining this phenomenon are briefly reviewed, the greatest attention being paid to a model accounting for the presence of equilibrium-composition near-boundary layers. It is demonstrated that based on the results of grain boundaries investigations one can conclude that at relatively low temperatures (< 0.35 – 0.40 Tm) the diffusant pumping from a grain boundary proceeds much faster than volume diffusion, and possible reasons for that are considered.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

133-144

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Fisher: J. Appl. Phys. Vol. 22 (1951), p.74.

Google Scholar

[2] V.N. Kaigorodov and S.M. Klotsman: Letters to JETF Vol. 28 (1978), p.386.

Google Scholar

[3] V.N. Kaigorodov and S.M. Klotsman: Phys. Rev. B Vol. 49 (1994), p.9376.

Google Scholar

[4] I. Kaur, Y. Mishin and W. Gust: Fundamentals of Grain and Interface Boundary Diffusion (Chichester, Wiley 1995).

Google Scholar

[5] Y. Mishin, Chr. Herzig, J. Bernardini and W. Gust: Int. Mater. Rev. Vol. 42 (1997), p.155.

Google Scholar

[6] Y. Mishin and Chr. Herzig: Mat. Sci. Eng. Vol. A260 (1999), p.55.

Google Scholar

[7] R.T.P. Whipple: Philps. Mag. Vol. 45 (1954), p.1225.

Google Scholar

[8] T. Suzuoka: Trans. Jpn. Inst. Met. Vol. 2 (1961), p.25.

Google Scholar

[9] T. Suzuoka: J. Phys. Soc. Jpn. Vol. 19 (1964), p.839.

Google Scholar

[10] H.S. Levin and C.J. MacCallum: J. Appl. Phys. Vol. 31 (1960), p.595.

Google Scholar

[11] A.D. Le Claire: Br. J. Appl. Phys. Vol. 14 (1963), p.351.

Google Scholar

[12] V.N. Kaigorodov, V.V. Popov, E.N. Popova, T.N. Pavlov and S.V. Efremova: J. Phase Equilib. Diff. Vol. 26 (2005), p.510.

Google Scholar

[13] S.M. Klotsman, V.N. Kaigorodov, M.I. Kurkin and A.A. Dyakin: Interface Sci. Vol. 8 (2000), p.323.

DOI: 10.1023/a:1008723627168

Google Scholar

[14] V.V. Kondratev and I. Sh. Trachtenberg: Fiz. Met. Metalloved. Vol. 62 (1986), p.434.

Google Scholar

[15] V.V. Kondratev and I. Sh. Trachtenberg: Phys. Stat. Sol. Vol. 171 (1992), p.303.

Google Scholar

[16] Y.M. Mishin and I.V. Yurovitskiy: Phil. Mag. Vol. 64 (1991), p.1239.

Google Scholar

[17] V.L. Gapontsev and V.M. Koloskov: Phys. Met. Metallogr. Vol. 81 (1996), p.1.

Google Scholar

[18] O.A. Kaibishev and R.Z. Valiev: Grain Boundaries and Properties of Metals (in Russian), (Moscow, Metallurgy 1987).

Google Scholar

[19] A. Suzuki and Y. Mishin: J. Metastab. and Nanocrystalline Materials Vol. 19 (2004), p.1.

Google Scholar

[20] M.C. Dudarev, V. V, Dyakin, V.N. Kaigorodov, S.M. Klotsman and M.I. Kurkin: Fiz. Met. Metalloved. Vol. 79 (1995), p.136.

Google Scholar

[21] M.I. Kurkin, S.M. Klotsman and V.V. Dyakin: Phys. Met. Metallogr. Vol. 81 (1996), p.366.

Google Scholar

[22] S.M. Klotsman, M.I. Kurkin, V.N. Kaigorodov and V.V. Dyakin: Phys. Met. Metallogr. Vol. 82 (1996), p.419.

Google Scholar

[23] V.V. Popov: Phys. Met. Metallogr. Vol. 102 (2006), p.453.

Google Scholar

[24] V.V. Popov: Def. Dif. For. Vol. 258-260 (2006), p.497.

Google Scholar

[25] S.M. Klotsman, S.V. Osetrov and A.N. Timofeev: Phys. Rev. B Vol. 46 (1992), p.2831.

Google Scholar

[26] J. Askill: Phys. Stat. Sol. 9 (1965), p. K167.

Google Scholar

[27] L. Klinger and E. Rabkin: Acta Mater. Vol. 47 (1999), p.725.

Google Scholar

[28] S.M. Klotsman, V.N. Kaigorodov, M.I. Kurkin, A.V. Ermakov, V.K. Rudenko, A.N. Timofeev and N.I. Timofeev: Phys. Met. Metallogr. Vol. 93 (2002), p.62.

Google Scholar

[29] A.G. Kesarev and V.V. Kondratev: Phys. Met. Metallogr. (2007) in press.

Google Scholar