Solid State Transformations in Cu/In-48Sn/Cu Diffusion Soldered Interconnections

Article Preview

Abstract:

Paper describes solid state phenomena occurring during the formation of interconnections intended to the electronic industry. Diffusion soldering technology is an undemanding and functional tool to use when the growth of intermetallic phase(s) is desired and controlled in order to obtain the joint consisted solely of an intermetallic phase. Scanning and transmission electron microscopy investigations of the microstructure and sequence of appearance of the intermetallics within the joined area are discussed. The diffusion path describing the chemical composition changes across the interconnection was found to correlate with microstructure transformations. The growth kinetics of the δ′[Cu41(Sn,In)11] phase was determined in the temperature range of 300 – 350 °C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

165-174

Citation:

Online since:

March 2008

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Humpsten and D.M. Jacobson: Principles of Soldering and Brazing (ASM International, Materials Park, OH 1993).

Google Scholar

[2] D. M Jacobson and S.P. S Sangha: Novel Applications of Diffusion Soldering (GEC-Marconi Materials Technology Ltd, Hirst Division, Hertfordshire, England 1995).

Google Scholar

[3] P.K. Khanna, S.K. Bhatnagar, G. Dalke, D. Brunner and W. Gust: Mat. Sci. Eng. B Vol. 33 (1995), p. l6.

Google Scholar

[4] S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith and K.J. Puttlitz: JOM Vol. 55 (2003), p.61.

DOI: 10.1007/s11837-003-0143-6

Google Scholar

[5] COST 531 Lead free solder materials, database.

Google Scholar

[6] J. Wojewoda and P. Zięba: InŜynieria Materiałowa Vol. 24 (2004), p.460.

Google Scholar

[7] H. Fidos and H. Schreiner: Z. Metallkd. Vol. 61 (1971), p.225.

Google Scholar

[8] S. Bader, W. Gust and H. Hieber: Acta Metall. Mater. Vol. 43 (1995), p.329.

Google Scholar

[9] C.R. Kao: Mat. Sci. Eng. A Vol. 238 (1997), p.196.

Google Scholar

[10] D. Gur and M. Bamberger: J. Mater. Sci. Vol. 35 (2000), p.4601.

Google Scholar

[11] P.G. Kim and K.N. Tu: Mater. Chem. Phys. Vol. 53 (1998), p.165.

Google Scholar

[12] J.A. van Beck, S.A. Stolk and F.J.J. van Loo: Z. Metallkd. Vol. 73 (1982), p.439.

Google Scholar

[13] T. Ishida: Trans. JIM Vol. 14 (1973), p.37.

Google Scholar

[14] C. Tsao and S. Chen: J. Mater. Sci. Vol. 30 (1995), p.5215.

Google Scholar

[15] Y.M. Liu and T.H. Chuang: J. Electron. Mater. Vol. 29 (2000), p.405.

Google Scholar

[16] Y.H. Tseng, M.S. Yeh and T.H. Chuang: J. Electron. Mater. Vol. 28 (1999), p.105.

Google Scholar

[17] H.K. Kim, H.K. Liou and K.N. Tu: Appl. Phys. Lett. Vol. 66 (1995), p.2337.

Google Scholar

[18] M. Schaefer, R.A. Fournelle and J. Liang: J. Electron. Mater. Vol. 27 (1998), p.1167.

Google Scholar

[19] A.D. Romig Jr., F.G. Yost and P.F. Hlava, in: Proc. Microbeam Analysis 1984, edited by A.D. Romig, Jr. and J.I. Goldstein, San Francisco Press, CA, San Francisco (1984).

Google Scholar

[20] J.B. Clark: Trans. Metal. Soc. AIME Vol. 227, (1963) 1250.

Google Scholar

[21] B. Pieraggi: Oxid. Met. Vol. 27 (1987), p.177.

Google Scholar

[22] S. Sommadossi, W. Gust and E.J. Mittemeijer: Mater. Chem. Phys. Vol. 77 (2002), p.924.

Google Scholar