Application of Statistical Moment Method to Thermodynamic Properties and Phase Transformations of Metals and Alloys

Article Preview

Abstract:

The thermodynamic properties and phase transformations of metals and alloys are studied using the statistical moment method, going beyond the quasi-harmonic approximations. Including the power moments of the atomic displacements up to the fourth order, the Helmholtz free energies and the related thermodynamic quantities are derived explicitly in closed analytic forms. The thermodynamic quantities, like thermal lattice expansion coefficients, specific heats, Grüneisen constants, elastic constants calculated by using the SMM are compared with those of other theoretical schemes and the experimental results. The hcp-bcc structural phase transformations observed for IVB elements, Ti, Zr and Hf, are discussed in terms of the anharmonicity of thermal lattice vibrations. The equilibrium phase diagrams are calculated for the refractory Ta-W and Mo-Ta bcc alloys. In addition, the temperature dependence of the elastic moduli C11, C12 and C14 and those of the ideal tensile and shear strengths of the bcc elements Mo, Ta and W are studied: We also discuss the melting transitions of metals and alloys within the framework of the SMM and estimate the melting temperatures through the limiting temperature of the crystalline stability.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

209-240

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ya P. Terleski and N. Tang: Ann. Phys. Vol. 19 (1967), p.299.

Google Scholar

[2] N. Tang and V.V. Hung: Phys. Stat. Sol. B Vol. 149 (1988), p.511.

Google Scholar

[3] N. Tang and V.V. Hung: Phys. Stat. Sol. B Vol. 161 (1990), p.165; ibid Vol. 162 (1990), p.371.

Google Scholar

[4] V.V. Hung and K. Masuda-Jindo: J. Phys. Soc. Jap. Vol. 69 (2000), p. (2067).

Google Scholar

[5] V.V. Hung, H. V. Tich and K. Masuda-Jindo: J. Phys. Soc. Jap. Vol. 69 (2000), p.2961.

Google Scholar

[6] K. Masuda-Jindo, V.V. Hung and P. D. Tam: Phys. Rev. B Vol. 67 (2003), p.094301.

Google Scholar

[7] K. Masuda-Jindo and V.V. Hung: J. Phys. Soc. Jap. Vol. 73 (2004), p.1205.

Google Scholar

[8] K. Masuda-Jindo, S.R. Nishitani and V.V. Hung: Phys. Rev. B Vol. 70 (2004), p.184122.

Google Scholar

[9] K. Masuda-Jindo, V.V. Hung and M. Menon: Phys. Stat. Sol. (c) Vol. 2 (2005), p.1781.

Google Scholar

[10] V.V. Hung, K. Masuda-Jindo and P.H.M. Hanh: J. Phys. -Condens. Matter Vol. 18 (2006), p.283.

Google Scholar

[11] V.V. Hung, J. Lee and K. Masuda-Jindo: J. Phys. Chem. Solids Vol. 67 (2006), p.682.

Google Scholar

[12] Vu Van Hung, J. Lee, K. Masuda-Jindo and L. Kim: Comp. Mat. Sci. Vol. 37 (2006), p.565.

Google Scholar

[13] D. Frenkel and A. J. C. Ladd: J. Chem. Phys. Vol. 81 (1984), p.3188.

Google Scholar

[14] D. Frenkel and B. Smit: Understanding Molecular Simulation from Algorithm to Applications (Academic Press, 2002).

Google Scholar

[15] P.E.A. Turchi, A. Gonis, V. Drchal and J. Kudrnocsky: Phys. Rev. B Vol. 64 (2001), p.085112.

Google Scholar

[16] P.E.A. Turchi, V. Drchal, J. Kudmocský, C. Colinet, L. Kaufman and Z. -K. Liu: Phys. Rev. B Vol. 71 (2000), p.094206; N.I. Papanicolaou, G.C. Kallinteris, G.A. Evangelakis and D.A. Papaconstantopoulos: Comp. Mat. Sci. Vol. 17 (2000), p.224.

Google Scholar

[17] N.M. Plakida and T. Siklós: Acta. Phys. Hung. Vol. 45 (1978), p.37.

Google Scholar

[18] N.V. Hung and J.J. Rehr: Phys. Rev. B Vol. 56 (1997), p.43.

Google Scholar

[19] R. Sahara, H. Mizuseki, K. Ohno, S. Uda, T. Fukuda and Y. Kawazoe: J. Chem. Phys. Vol. 110 (1999), p.9608.

Google Scholar

[20] D. Marx and M. Parrinello: J. Chem. Phys. Vol. 104 (1996), p.4077.

Google Scholar

[21] H. Kitamura, S. Tsuneyuki, T. Ogitsu and T. Miyake: Nature Vol. 404 (2000), p.259.

Google Scholar

[22] V.V. Hung, K. Masuda-Jindo and Nguyan Thi Hoa: J. Mater. Res. (2007), in press.

Google Scholar

[23] L. Anthony, J.K. Okamoto and B. Fultz: Phys. Rev. Lett., 70, 1128 (1993).

Google Scholar

[24] L.J. Nagel, L. Anthony, J.K. Okamoto and B. Fultz: J. Phase Equil. 18, 551 (1997).

Google Scholar

[25] R. Besson and J. Morillo: Phys. Rev. B Vol. 55, 193 (1997).

Google Scholar

[26] V. Rosato, M. Guillope and B. Legrand: Philos. Mag. A59, 321 (1989).

Google Scholar

[27] F. Cleri and V. Rosato: Phys. Rev. B Vol. 48, 22 (1993).

Google Scholar

[28] V.L. Moruzzi, J.F. Janak and K. Schwarz: Phys. Rev. B Vol. 37 (1988).

Google Scholar

[29] J. Mei, J.W. Davenport and G.W. Fernando: Phys. Rev. B Vol. 43 (1991), p.4653.

Google Scholar

[30] H. Cynn and C.S. Yoo: Phys. Rev. B Vol. 59 (1999), p.8526.

Google Scholar

[31] K.W. Katahara, M.H. Maghnani and E.S. Fisher: J. Phys. F-Met. Phys. Vol. 9 (1979), p.773.

Google Scholar

[32] R.E. Cohen and O. Gülseren: Phys Rev. B Vol. 63 (2001), p.224101.

Google Scholar

[33] W. Petry, A. Heiming, J. Trampenau, M. Alba, C. Herzig, H.R. Schober and G. Vogl: Phys. Rev. B Vol. 43 (1991), p.10933.

DOI: 10.1103/physrevb.43.10933

Google Scholar

[34] Y. Chen, C-L. Fu, K-M. Ho and B.N. Harmon: Phys. Rev. B Vol. 31 (1985), p.6775.

Google Scholar

[35] U. Pinsook and G. L. Ackland: Phys. Rev. B Vol. 58 (1998), p.11252; ibid Vol. 59 (1999), p.11252.

Google Scholar

[36] E. G. Moroni, G. Grimvall and T. Jarlborg: Phys. Rev. Lett. Vol. 76 (1996), p.2758.

Google Scholar

[37] F. Willaime and C. Mossobrio: Phys. Rev. B Vol. 43 (1991), p.11653.

Google Scholar

[38] S.A. Ostani and V. Yu Trubitsin: Phys. Rev. B Vol. 57 (1998), 13485.

Google Scholar

[39] T. May, W. Muller and D. Strauch: Phys. Rev. B Vol. 57 (1998), p.5788.

Google Scholar

[40] R. Ahuja, J.M. Wills, B. Johansson and O. Eriksson: Phys. Rev. B Vol. 48 (1993), p.16269.

Google Scholar

[41] L. Gerward and J. Straun-Olsen: Powder Diffr. Vol. 8 (1993), p.127.

Google Scholar

[42] D.R. Lide: CRC Handbook of Chemistry and Physics (CCRC Press, Boca Ratton 2001-2002).

Google Scholar

[43] R. Kikuchi: Phys. Rev. Vol. 81 (1951), p.988.

Google Scholar

[44] R. Kikuchi and K. Masuda-Jindo: Comp. Mat. Sci. Vol. 8 (1997), p.1.

Google Scholar

[45] A. Finel: Prog. Theor. Phys. Suppl. Vol. 115 (1994), p.59; A. Finel and R. Tétot, in: Proc. NATO ASI, Corfu, June (1995).

Google Scholar

[46] T. Horiuchi, S. Takizawa, T. Suzuki and T. Mohri: Metall. Mater. Trans. Vol. 26 (1995), p.11.

Google Scholar

[47] J. Frenkel: Z. Phys. Vol. 37 (1926), p.572.

Google Scholar

[48] E. Orowan: Rep. Prog. Phys. Vol. 12, (1949), p.185.

Google Scholar

[49] M. Šob, L.G. Wang and V. Vitek: Mater. Sci. Eng. A Vols. 264-236 (1997), p.1075.

Google Scholar

[50] D. Roundy, C.R. Krenn and M.L. Cohen: Phil. Mag. A Vol. 81 (2001), p.1725; C.R. Krenn, D. Roundy, J.W. Morris Jr and M.L. Cohen: Mat. Sci. Eng. A Vols. 319-321, (2001), p.111.

DOI: 10.1016/s0921-5093(01)00998-4

Google Scholar

[51] K. Masuda, N. Hamada and K. Terakura: J. Phys. F-Met. Phys. Vol. 14 (1984), p.47.

Google Scholar

[52] J. P. Hirth and L. Lothe: Theory of Dislocations (New-York: McGraw-Hill 1968); G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregated Properties (MIT Press, Cambridge 1971).

Google Scholar

[53] H. Haas, C. Z. Wang, M. Fähnle, C. Elsasser and K.M. Ho: Phys. Rev. B Vol. 57 (1998), p.1461.

Google Scholar

[54] S.C. Kim and T.H. Kwon: Phys. Rev. B Vol. 45 (1992), p.2105.

Google Scholar

[55] I.M. Mikhaiovskii: P.Y. Poltinin and L.I. Fedorova: Sov. Phys. Solid State Vol. 23 (1981), p.757.

Google Scholar

[56] M. Kumari, K. Kumari and N. Dass, Phys. Stat. Sol. (a) Vol. 99 (1987).

Google Scholar