Statistical Thermodynamics and Ordering Kinetics of D019-Type Phase: Application of the Models for H.C.P.-Ti–Al Alloy

Article Preview

Abstract:

Using the self-consistent field approximation, the static concentration waves approach and the Onsager-type kinetics equations, the descriptions of both the statistical thermodynamics and the kinetics of an atomic ordering of D019 phase are developed and applied for h.c.p.-Ti–Al alloy. The model of order–disorder phase transformation describes the phase transformation of h.c.p. solid solution into the D019 phase. Interatomic-interaction parameters are estimated for both approximations: one supposes temperature-independent interatomic-interaction parameters, while the other one includes the temperature dependence of interchange energies for Ti–Al alloy. The partial Ti–Al phase diagrams (equilibrium compositions of the coexistent ordered α2-phase and disordered α-phase) are evaluated for both cases. The equation for the time dependence of D019- type long-range order (LRO) parameter is analyzed. The curves (showing the LRO parameter evolution) are obtained numerically for both temperature-independent interaction energies and temperature-dependent ones. Temperature dependence of the interatomic-interaction energies accelerates the LRO relaxation and diminishes a spread of the values of instantaneous and equilibrium LRO parameters versus the temperature. Both statistical-thermodynamics and kinetics results show that equilibrium LRO parameter for a non-stoichiometry (where an atomic fraction of alloying component is more than 0.25) can be higher than for a stoichiometry at high temperatures. The experimental phase diagram confirms the predicted (ordered or disordered) states for h.c.p.-Ti– Al.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

283-302

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Pfeiler and B. Sprušil: Mat. Sci. Eng. A Vol. 324 (2002), p.34.

Google Scholar

[2] Y.W. Kim: J. Miner, Met. Mater. Soc. Vol. 46 (1994), p.30.

Google Scholar

[3] D. Banerjee, in: Intermetallic Compounds, edited by J.H. Westbrook and R.L. Fleischer, volume 2, John Wiley & Sons (1994).

Google Scholar

[4] M. Yamaguchi, H. Inui, K. Koshoba, M. Matsumorto and Y. Shirai, in: High-Temperature Ordered Intermetallic Alloys VI, volume 346, Materials Research Society (1996).

Google Scholar

[5] M. Yamaguchi, H. Inui and K. Ito: Acta Mater. Vol. 48 (2000), p.307.

Google Scholar

[6] N.M. Matveeva and Eh.V. Kozlov: Ordered Phases in Metallic Systems (Nauka, Moscow 1989) (in Russian).

Google Scholar

[7] Eh.V. Kozlov, V.M. Dement'ev, N.M. Kormin and D.M. Shtern: Structures and Stability of the Ordered Phases (Publ. House of Tomsk University, Tomsk 1994) (in Russian).

Google Scholar

[8] H. Xiao, I.M. Robertson and H.K. Birnbaum: Acta Mater. Vol. 50 (2002), p.3671.

Google Scholar

[9] I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma and K. Ishida: Acta Mater. Vol. 48 (2000), p.3113.

DOI: 10.1016/s1359-6454(00)00118-x

Google Scholar

[10] F. Zhang, S.L. Chen, Y.A. Chang and U.R. Kattner: Intermetallics Vol. 5 (1997), p.471.

Google Scholar

[11] J. Zou, C.L. Fu and M.H. Yoo: Intermetallics Vol. 3 (1995), p.265.

Google Scholar

[12] R. Kainuma, Y. Fujita, H. Mitsui, I. Ohnuma and K. Ishida, Intermetallics Vol. 8 (2000), p.855.

Google Scholar

[13] O. Semenova, R. Krachler and H. Ipser: Solid State Sci. Vol. 4 (2002), p.1113.

Google Scholar

[14] A. van de Walle and M. Asta: Metall. Mater. Trans. A Vol. 33 (2002), p.735.

Google Scholar

[15] D. Xu, Q. Hu, J. Lu, Y. Hao, R. Yang, S. E. Kulkova and D. I. Bazhanov: J. Phys.: Conference Series Vol. 29 (2006), p.220.

Google Scholar

[16] M. Shimono and H. Onodera: Phys. Rev. B Vol. 61 (2000), p.14271.

Google Scholar

[17] D.S. Xu, Y. Song, D. Li and Z.Q. Hu: Mat. Sci. Eng. A Vol. 234-236 (1997), p.230.

Google Scholar

[18] D.G. Konitzer, I.P. Jones and H.L. Fraser: Scripta Metall. Vol. 20 (1986), p.265.

Google Scholar

[19] T.K. Nandy, D. Banerjee and A.K. Gogia, in: Proceedings of the 6th World Conference on Titanium, France (1988).

Google Scholar

[20] U.R. Kattner, J.C. Lin and Y.A. Chang: Metall. Trans. A Vol. 23 (1992), p. (2081).

Google Scholar

[21] M.F. Zhorovkov: Symmetric Analysis of Substitutional Superstructures in Hexagonal ClosePacked Lattice, in: Izvestiya Vuzov. Fizika, Dep. in VINITI 11. 03. 91 No. 1023-B91, Tomsk, 1991 (in Russian).

Google Scholar

[22] M.F. Zhorovkov, D.L. Fuks and V.E. Panin: Phys. Stat. Sol. (b) Vol. 68 (1975), p.379.

Google Scholar

[23] M.I. Solov'eva and D.M. Shtern: Izvestiya Vuzov. Fizika Vol. 6 (1990), p.90 (in Russian).

Google Scholar

[24] C.S. Barrett and T.B. Massalski: Structure of Metals (Metallurgiya, Moscow 1984) (translation into Russian).

Google Scholar

[25] C.S. Barrett and T.B. Massalski, Structure of Metals (Pergamon Press, Oxford 1980).

Google Scholar

[26] A.G. Khachaturyan: Theory of Structural Transformations in Solids (John Wiley & Sons, New York 1983).

Google Scholar

[27] V.N. Bugaev and V.A. Tatarenko: Interaction and Arrangement of Atoms in Interstitial Solid Solutions Based on Close-Packed Metals (Naukova Dumka, Kiev 1989) (in Russian).

Google Scholar

[28] L. -Q. Chen and A.G. Khachaturyan: Phys. Rev. B Vol. 44 (1991), p.4681.

Google Scholar

[29] L. -Q. Chen and A.G. Khachaturyan: in: Kinetics of Ordering Transformations in Metals, edited by H. Chen and V.K. Vasudevan, TMS, Pennsylvania (1992).

Google Scholar

[30] L. -Q. Chen and A.G. Khachaturyan: Phys. Rev. B Vol. 46 (1992), p.5899.

Google Scholar

[31] R. Poduri and L. -Q. Chen: Acta Mater. Vol. 45 (1997), p.245.

Google Scholar

[32] R. Poduri and L. -Q. Chen: Acta Mater. Vol. 46 (1998), p.1719.

Google Scholar

[33] Y. Wang, D. Banerjee, C.C. Su and A.G. Khachaturyan: Acta Mater. Vol. 46 (1998), p.2983.

Google Scholar

[34] G. Rubin and A.G. Khachaturyan: Acta Mater. Vol. 47 (1999), p. (1995).

Google Scholar

[35] A.A. Smirnov: Molecular-Kinetic Theory of Metals (Nauka, Moscow 1966) (in Russian).

Google Scholar

[36] L. Murray: Binary Alloys Phase Diagrams (ASM, Metals Park, Ohio 1986).

Google Scholar

[37] C. McCullough, J.J. Valencia, C.G. Levi and R. Mehrrabian: Acta Metall. Vol. 37 (1989), p.1321.

Google Scholar

[38] R. Kainuma, M. Palm and G. Inden: Intermetallics Vol. 2 (1994), p.321.

Google Scholar