A Semi-Empirical Parameterization of Interatomic Interactions Based on the Statistical-Thermodynamic Analysis of the Data on Radiation Dif-fraction and Phase Equilibria in F.C.C.-Ni–Fe Alloys

Article Preview

Abstract:

Using both the statistical-thermodynamics methods within the scope of the selfconsistent field approximation and the diffraction data on coherent (or diffuse) scattering of X-rays (or thermal neutrons) from (dis)ordered f.c.c.-Ni–Fe alloys of various compositions, the estimation of interatomic interactions (including their magnetic contribution) and their temperature– concentration dependences were obtained. Based on the static concentration-wave representation, the expressions for configuration free energies of L12-Ni3Fe-type permalloy, L10-NiFe-type elinvar and L12-Fe3Ni-type invar were analyzed, considering explicit expressions for configuration entropies of atomic and magnetic subsystems with their configuration internal energies. Phase diagram of a system at issue was plotted within the field of the presence of f.c.c.-Ni–Fe alloys; their phase boundaries, equilibrium (static) properties near critical points (order parameter, etc.), and possible microstructures developed by composition-controlled magnetic transitions and/or order–disorder constant-composition solid–solid phase transformations were discussed. The obtained results were compared with available experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

303-318

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Béranger, F. Duffaut, J. Morlet ands J. -F. Tiers: Les Alliages de Fer et de Nickel: Cent Ans Après la Découverte de l'Invar (Technique et Documentation-Lavoisier, Paris 1996).

Google Scholar

[2] A.P. Miodownik, in: Physics and Applications of Invar Alloys, edited by H. Saito et al., number 3 of Honda Memorial Series on Materials Science, chapters 12 and 18, Maruzen Company, Ltd., Tokyo (1978).

Google Scholar

[3] P.R. Munroe and M. Hatherly: Scripta Metall. Mater. Vol. 32 (1995), p.93.

Google Scholar

[4] R.A. Jago, P.E. Clark and P.L. Rossiter: Phys. Stat. Sol. (a) Vol. 74 (1982), p.247.

Google Scholar

[5] A.G. Khachaturyan: Prog. Mat. Sci. Vol. 22 (1978), p.1.

Google Scholar

[6] A.G. Khachaturyan: Theory of Structural Transformations in Solids (John Wiley & Sons, New York 1983).

Google Scholar

[7] V.M. Danilenko, D.R. Rizdvyanetskiy and A.A. Smirnov: Fiz. Met. Metalloved. Vol. 15 (1963), p.194.

Google Scholar

[8] V.M. Danilenko, D.R. Rizdvyanetskiy and A.A. Smirnov: Fiz. Met. Metalloved. Vol. 16 (1963), p.3.

Google Scholar

[9] S.V. Semenovskaya: Phys. Stat. Sol. (b) Vol. 64 (1974), p.291.

Google Scholar

[10] G. Inden: Physica B Vol. 103 (1981), p.82.

Google Scholar

[11] V.A. Tatarenko, T.M. Radchenko and V.M. Nadutov: Metallofiz. Noveishie Tekhnol. Vol. 25 (2003), p.1303.

Google Scholar

[12] V.A. Tatarenko and T.M. Radchenko: Intermetallics Vol. 11 (2003), p.1319.

Google Scholar

[13] V.A. Tatarenko et al.: submitted to Phys. Stat. Sol. (b) (2007).

Google Scholar

[14] L.J. Swartzendruber, V.P. Itkin and C.B. Alcock: J. Phase Equilib. Vol. 12 (1991), p.288.

Google Scholar

[15] A.Z. Menshikov and E.E. Yurchikov: Izv. Akad. Nauk SSSR. Ser. Fiz. Vol. 36 (1972), p.1463.

Google Scholar

[16] M.A. Krivoglaz: X-Ray and Neutron Diffraction in Nonideal Crystals (Springer Verlag, Berlin 1996).

Google Scholar

[17] M.A. Krivoglaz: Diffuse Scattering of X-Rays and Neutrons by Fluctuations (Springer Verlag, Berlin 1996).

Google Scholar

[18] S. Lefebvre, F. Bley, M. Bessiere, M. Fayard, M. Roth and J.B. Cohen: Acta Cryst. A Vol. 36 (1980), p.1.

Google Scholar

[19] S. Lefebvre, F. Bley, M. Fayard and M. Roth: Acta Metall. Vol. 29 (1981), p.749.

Google Scholar

[20] F. Bley, Z. Amilius and S. Lefebvre: Acta Metall. Vol. 36 (1988), p.1643.

Google Scholar

[21] G.E. Ice, C.J. Sparks, A. Habenschuss and L.B. Shaffer: Phys. Rev. Lett. Vol. 68 (1992), p.863.

Google Scholar

[22] X. Jiang, G.E. Ice, C.J. Sparks, L. Robertson and P. Zschack: Phys. Rev. B Vol. 54 (1996), p.3211.

Google Scholar

[23] G.E. Ice and C.J. Sparks: Metallofiz. Noveishie Tekhnol. Vol. 22(9) (2000), p.17.

Google Scholar

[24] J.L. Robertson, G.E. Ice, C.J. Sparks, X. Jiang, P. Zschack, F. Bley, S. Lefebvre and M. Besiere: Phys. Rev. Lett. Vol. 82 (1999), p.2911.

Google Scholar

[25] P. Cenedese, F. Bley and S. Lefebvre: Mat. Res. Soc. Symp. Proc. Vol. 21 (1984), p.351.

Google Scholar

[26] V.I. Goman'kov, N.I. Nogin and E.V. Kozis: Fiz. Met. Metalloved. Vol. 55 (1983), p.125.

Google Scholar

[27] Yu.L. Rodionov, G.G. Isfandiyarov and O.S. Sarsenbin: Fiz. Met. Metalloved. Vol. 48 (1979), p.979.

Google Scholar

[28] G. Dumpich, J. Kästner, U. Kirschbaum, H. Mühlbauer, J. Liang, Th. Lübeck and E.F. Wassermann: Phys. Rev. B Vol. 46 (1992), p.9258.

Google Scholar

[29] K. Lagarec and D.G. Rancourt: Phys. Rev. B Vol. 62 (2000), p.978.

Google Scholar

[30] K.C. Russell and F.A. Garner: Metall. Mater. Trans. A Vol. 23 (1992).

Google Scholar