Semi-Insulating Silicon for Microwave Devices

Article Preview

Abstract:

The concept of fully encapsulated, semi-insulating silicon (SI-Si), Czochralski-silicon-on-insulator (CZ-SOI) substrates for silicon microwave devices is presented. Experimental results show that, using gold as a compensating impurity, a Si resistivity of order 400 kΩcm can be achieved at room temperature using lightly phosphorus doped substrates. This compares favourably with the maximum of ~180kΩcm previously achieved using lightly boron doped wafers and is due to a small asymmetry of the position of the two gold energy levels introduced into the band gap. Measurements of the temperature dependence of the resistivity of the semi-insulating material show that a resistivity ~5kΩcm can be achieved at 100°C. Thus the substrates are suitable for microwave devices working at normal operating temperatures and should allow Si to be used for much higher frequency microwave applications than currently possible.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

101-106

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kiyota, T. Kikuchi, K. Washio, T. Inada, Japanese Journal of Applied Physics 39, (1987).

Google Scholar

[2] B. Banerjee, S. Venkataraman, L. Yuan, L. Qingqing, L. Chang-Ho, S. Nuttinck, H. Dekhyuon, Y. J. E. Chen, J. D. Cressler, J. Laskar, G. Freeman, D. C. Ahlgren, Electron Devices, IEEE Transactions on 52, 585 (2005).

DOI: 10.1109/ted.2005.845078

Google Scholar

[3] J. D. Cressler, Microwave Theory and Techniques, IEEE Transactions on 46, 572 (1998).

Google Scholar

[4] W. Heinrich, J. Gerdes, F. J. Schmuckle, C. Rheinfelder, K. Strohm, Microwave Theory and Techniques, IEEE Transactions on 46, 709 (1998).

DOI: 10.1109/22.668686

Google Scholar

[5] A. C. Reyes, S. M. El-Ghazaly, S. J. Dorn, M. Dydyk, D. K. Schroder, H. Patterson, Microwave Theory and Techniques, IEEE Transactions on 43, 2016 (1995).

DOI: 10.1109/22.414534

Google Scholar

[6] J. N. Burghartz, M. Bartek, B. Rejaei, P. M. Sarro, A. Polyakov, N. P. Pham, E. Boullaard, K. T. Ng, Bipolar/BiCMOS Circuits and Technology Meeting, 2002. Proceedings of the 2002, 17-23 (2002).

DOI: 10.1109/bipol.2002.1042878

Google Scholar

[7] D. M. Jordan, H. Haslam, M. Kanad, P. R. Wilshaw, ECS Transactions 16, 41 (2008).

Google Scholar

[8] K. Mallik, R. J. Falster, P. R. Wilshaw, Semiconductor Science Technology 18, 517 (2003).

Google Scholar

[9] P. R. Wilshaw, R. Falster, K. Mallik, Substrate for High Frequency Integrated Circuit, UK Patent, 0618202. 6 (2006).

Google Scholar

[10] R. Wang, S. A. Campbell, R. Tan, J. Meyer, Y. Cai, Topical meeting on Silicon Integrated circuits in RF systems: Digest of papers, 164 (1998).

DOI: 10.1109/smic.1998.750213

Google Scholar

[11] W. Schröter, M. Seibt, in Properties of Crystalline Silicon, R. Hull, Ed. (1998), pp.543-572.

Google Scholar

[12] T. Y. Tan, U. Gosele, Applied Physics A 37, 1 (1985).

Google Scholar

[13] Information on http: /www. linear. com/designtools/software.

Google Scholar