Search for Ultrahard Materials and Recent Progress in the Understanding of Hardness Enhancement and Properties of Nanocomposites

Article Preview

Abstract:

The recent attempts to design new super- and ultrahard materials concentrate predominantly on those with high elastic moduli. This approach neglects the fact that elastic moduli describe the reversible, elastic response to small strain near equilibrium, whereas hardness is related to plastic deformation, the measurement of which involves substantial plastic strain, where the electronic structure becomes strongly distorted and can often result in structural transformations to softer phases. In the superhard nanocomposites consisting of 3-4 nm size randomly oriented nanocrystals of hard transition metal nitrides joined together by about one monolayer of silicon nitride variant, which is strengthened by negative charge transfer, the nanocrystals are free of defects and therefore reach ideal strength. Because of the strengthening of the interface and of the random orientation of the nanocrystals, these nanocomposites reach hardness of more than 100 GPa as shown experimentally. We provide a simple theoretical explanation why these materials can exceed the hardness of diamond, and outline a possible way how to design new nanocomposites with even higher hardness when reduction of Friedel oscillations of the valence charge density, which weaken the strength of the transition metal nitride, can be accomplished.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 159)

Pages:

1-10

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Veprek, J. Vac. Sci. Technol. A Vol. 17 (1999) p.2401.

Google Scholar

[2] S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova and J. Prochazka, Thin Solid Films Vol. 476 (2005) p.1.

DOI: 10.1016/j.tsf.2004.10.053

Google Scholar

[3] S. Z. Li, Y. Shi and H. Peng, Plasma Chem. Plasma Process., Vol. 12 (1992) p.287.

Google Scholar

[4] S. Veprek, S. Reiprich and S. Z. Li, Appl. Phys. Lett. Vol. 66 (1995) p.2640.

Google Scholar

[5] S. Veprek and S. Reiprich, Thin Solid Films Vol. 268 (1995) p.64.

Google Scholar

[6] A. Niederhofer, T. Bolom, P. Nesladek, K. Moto,C. Eggs, D. S. Patil and S. Veprek, Surf. Coat. Technol. Vol. 146-147 (2001) p.183.

DOI: 10.1016/s0257-8972(01)01469-4

Google Scholar

[7] S. Christiansen, M. Albrecht, H. P. Strunk and S. Veprek, J. Vac. Sci. Technol. B Vol. 16 (1998).

Google Scholar

[8] S. Veprek, M. Haussmann, S. Reiprich, Li Shizhi and J. Dian, Surf. Coat. Technol. Vol. 86-87 (1996) p.394.

Google Scholar

[9] F. A. McClintock and A. S. Argon: Mechanical Behaviour of Materials (Addison-Wesley, Reading (USA), 1966).

Google Scholar

[10] A. Kelly, N. H. Macmillan: Strong Solids (Clarendon Press, Oxford, 1986).

Google Scholar

[11] A. S. Argon: Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, Oxford (U.K. ) 2008).

Google Scholar

[12] D. M. Teter, MRS Bull. Vol. 23 (1998) p.22.

Google Scholar

[13] N. Dubrovinskaia, V. L. Solozhenko, N. Miyajima, V. Dmitriev, O. O. Kurakevich and L. Dubrovinsky, Appl. Phys. Lett. Vol. 90 (2007) p.101912.

DOI: 10.1063/1.2711277

Google Scholar

[14] V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar and D. C. Rubie, Appl. Phys. Lett. Vol. 78 (2001) p.1385.

DOI: 10.1063/1.1337623

Google Scholar

[15] V. L. Solozhenko, High Pressure Research Vol. 22 (2002) p.519.

Google Scholar

[16] V. L. Solozhenko, S. N. Dub and N. V. Novikov, Diamond Related Mater. Vol. 10 (2001) p.2228.

Google Scholar

[17] V. L. Solozhenko, O. O. Kurakevich, D. Andrault, Y. L. Godec and M. Mezouar, Phys. Rev. Lett. Vol. 102 (2009) p.015506.

Google Scholar

[18] S. Yip, Nature Vol. 391 (1998) p.532; Nature Mater. Vol. 3 (2004) p.11.

Google Scholar

[19] A. S. Argon and S. Yip, Phil. Mag. Lett. Vol. 86 (2006) p.713.

Google Scholar

[20] A. S. Argon and S. Veprek, Mater. Res. Soc. Symp. Proc. Vol. 697 (2002) p.3.

Google Scholar

[21] S. Veprek and A. S. Argon, J. Vac. Sci. Technol. B Vol. 20 (2002) p.650.

Google Scholar

[22] S. G. Prilliman, S. M. Clark, A. P. Alivisatos, P. Karvankova and S. Veprek, Mater. Sci. Eng. A Vol. 437 (2006) p.379.

Google Scholar

[23] M. L. Cohen, Phys. Rev. B Vol. 32 (1985) p.7988.

Google Scholar

[24] M. L. Cohen, Solid St. Commun. Vol. 92 (1994) p.45.

Google Scholar

[25] A. Y. Liu and M. L. Cohen, Science. 245 841 (1989).

Google Scholar

[26] A. Y. Liu and R. M. Wentzovich, Phys. Rev. B Vol. 50 (1994) p.1362.

Google Scholar

[27] S. Veprek, J. Weidman and F. Glatz, J. Vac. Sci. Technol. A Vol. 13 (1995) p.2914.

Google Scholar

[28] Y. Zhang, H. Sun and C. Chen, Phys. Rev. B Vol. 73 (2006) p.064109.

Google Scholar

[29] X. Q. Chen, C. L. Fu, M. Krcmar and G. S. Painter, Phys. Rev. Lett. Vol. 100 (2008) p.196403.

Google Scholar

[30] M. R. Koehler, V. Keppens, B. C. Sales, R. Jin and D. Mandrus, J. Phys. D: Appl. Phys. Vol. 42 (2009) p.095414.

DOI: 10.1088/0022-3727/42/9/095414

Google Scholar

[31] M. Zhang, M. Wang, T. Cui, Y. Ma, Y. Niu and G. Zou, J. Phys. Chem. Solids Vol. 69 (2008) p. (2096).

Google Scholar

[32] Q. Gu, G. Krauss and W. Steuerer, Adv. Mater. Vol. 20 (2008) p.3620.

Google Scholar

[33] H. Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J. M. Yang, S. H. Tolbert and R. B. Kaner, Science. Vol. 316 (2007) p.436.

Google Scholar

[34] N. Dubrovinskaia, L. Dubrovinsky and V. L. Solozhenko, Science. Vol. 318 (2007) p.1550; author reply p.1550.

Google Scholar

[35] J. B. Levine, S. L. Nguyen, H. I. Rassol, J. A. Wright, S. E. Brown and R. B. Käner, J. Am. Chem. Soc. Vol. 130 (2008) p.16953.

Google Scholar

[36] R. F. Zhang, S. Veprek and A. S. Argon, Appl. Phys. Lett. Vol. 91 (2007) p.201914.

Google Scholar

[37] J. Qin, D. He, J. Wang, L. Fang, L. Lei, Y. Li, J. Hu, Z. Kou and Y. Bi, Adv. Mater. Vol. 20 (2008) p.4780.

Google Scholar

[38] S. Veprek, A. S. Argon and R. F. Zhang, Phil. Mag. Vol. (2009) p. submitted.

Google Scholar

[39] J. Yang, H. Sun and C. Chen, J. Amer. Chem. Soc. Vol. 130 (2008) p.7200.

Google Scholar

[40] F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, Phys. Rev. Lett. Vol. 91 (2003) p.015502.

Google Scholar

[41] A Simunek, J Vackar, Phys. Rev. Lett. Vol. 96 (2006) p.085501.

Google Scholar

[42] K Li, X Wang, FF Zhang, DF Xue, Phys. Rev. Lett. Vol. 100 (2008) p.235504.

Google Scholar

[43] R. W. Siegel and G. E. Fougere, Nanostructured Mater. Vol. 6 (1995) p.205.

Google Scholar

[44] S. A. Barnett, A. Madan, I. Kim and K. Martin, MRS Bull. Vol. 28 (2003) p.169.

Google Scholar

[45] S. A. Barnett, in: Francombe MH, Vossen JL (Eds. ), Mechanic and Dielectric Properties, Academic Press, Boston, 1993, pp.2-77.

Google Scholar

[46] S. Barnett and A. Madan, Phys. World. Vol. 11 (1998) p.45.

Google Scholar

[47] J. Musil and F. Regent, J. Vac. Sci. Technol. A Vol. 16 (1998) p.3301.

Google Scholar

[48] S. Veprek, H. -D. Männling, P. Karvankova and J. Prochazka, Surf. Coat. Technol. Vol. 200 (2006) p.3876.

Google Scholar

[49] R. F. Zhang and S. Veprek, Mater. Sci. Eng. A Vol. 424 (2006) p.128.

Google Scholar

[50] C. C. Koch, I. A. Ovidko, S. Seal and S. Veprek: Structural Nanocrystalline Materials (Cambridge University Press, Cambridge 2007).

Google Scholar

[51] A. Matthews and A. Leyland, Proc. of the SVS Techcon, Chicago, April 19-24, 2008, p.40 (Published by the Society of Vacuum Coaters, Albuquerque 2008).

Google Scholar

[52] S. Veprek and M. G. J. Veprek-Heijman, Surf. Coat. Technol. Vol. 202 (2008) p.5063.

Google Scholar

[53] J. Prochazka, P. Karvankova, M. J. G. Veprek-Heijman and S. Veprek, Mater. Sci. Eng. A Vol. 384 (2004) p.102.

Google Scholar

[54] R. F. Zhang and S. Veprek, Mater. Sci. Eng. A Vol. 448 (2007) p.111.

Google Scholar

[55] P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölen, T. Larsson, C. Mitterer, L. Hultman, Appl. Phys. Lett. Vol. 83 (2003) p. (2049).

DOI: 10.1063/1.1608464

Google Scholar

[56] S. Veprek, H. -D. Männling, M. Jilek and P. Holubar, Mater. Sci. Eng. A Vol. 366 (2004) p.202.

Google Scholar

[57] R. F. Zhang and S. Veprek, Acta Mater. Vol. 55 (2007) p.4615.

Google Scholar

[58] S. Veprek and M. G. J. Veprek-Heijman, Surf. Coat. Technol. Vol. 201 (2007) p.6064.

Google Scholar

[59] S. Veprek, M. Haussmann and S. Reiprich, J. Vac. Sci. Technol. A Vol. 14 (1996) p.46.

Google Scholar

[60] S. Q. Hao, B. Delley, S. Veprek and C. Stampfl, Phys. Rev. Lett. Vol. 97 (2006) p.086102.

Google Scholar

[61] S. Q. Hao, B. Delley and C. Stampfl, Phys. Rev. B Vol. 74 (2006) p.035402.

Google Scholar

[62] S. Veprek, A. S. Argon and R. F. Zhang, Phil. Mag. Lett., Vol. 87 (2007) p.955.

Google Scholar

[63] R. F. Zhang, A. S. Argon and S. Veprek, Phys. Rev. Lett., Vol. 102 (2009) p.015503.

Google Scholar

[64] R. F. Zhang, A. S. Argon and S. Veprek, Phys. Rev. B Vol. 79 (2009) p.245426.

Google Scholar

[65] M. G. J. Veprek-Heijman, R. G. Veprek, D. M. Parks, A. S. Argon and S. Veprek, Surf. Coat. Technol. Vol. 203 (2009) p.3385.

DOI: 10.1016/j.surfcoat.2009.04.028

Google Scholar

[66] www. platit. com.

Google Scholar

[67] S. Veprek, P. Karvankova and M. G. J. Veprek-Heijman, J. Vac. Sci. Technol. B Vol. 23 (2005) p. L17.

DOI: 10.1116/1.2131086

Google Scholar

[68] www. shm-cz. cz.

Google Scholar