AlGaN/GaN Based Heterostructures for MEMS and NEMS Applications

Article Preview

Abstract:

With the increasing requirements for microelectromechanical systems (MEMS) regarding stability, miniaturization and integration, novel materials such as wide band gap semiconductors are receiving more attention. The outstanding properties of group III-nitrides offer many more possibilities for the implementation of new functionalities and a variety of technologies are available to realize group III-nitride based MEMS. In this work we demonstrate the application of these techniques for the fabrication of full-nitride MEMS. It includes a novel actuation and sensing principle based on the piezoelectric effect and employing a two-dimensional electron gas confined in AlGaN/GaN heterostructures as integrated back electrode. Furthermore, the actuation of flexural and longitudinal vibration modes in resonator bridges are demonstrated as well as their sensing properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 159)

Pages:

27-38

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gardner J W 1994 Microsensors: Principles and application (Chichester, UK: Wiley).

Google Scholar

[2] Hsu T-R 2002 MEMS and Microsystems: Design and Manufacture (New York: McGraw-Hill).

Google Scholar

[3] Lyshevski S E 2005 Nano- and Micro-Electromechanical Systems: Fundamentals of Nano- and Microengineering (Boca Raton, Florida: CRC Press).

DOI: 10.1201/9781315219288

Google Scholar

[4] Varadan V K 2003 Proc. SPIE 5062 20.

Google Scholar

[5] Korvink J G and Paul O (eds. ) 2006 MEMS: a practical guide to design, analysis and applications (Norwich, NY: Springer).

Google Scholar

[6] Flik G, Eisenschmid H, Raudzis C, Schatz F, Schoenenborn W and Trah H-P 2002 Mater. Res. Soc. Symp Proc 687 B1. 1.

DOI: 10.1557/proc-687-b1.1

Google Scholar

[7] Ekinci K L and Roukes M L 2005 Rev. Sci. Instrum. 76 061101.

Google Scholar

[8] Jackson K M, Edwards R L, Dirras G F and Sharpe Jr. W N 2002 Mater. Res. Soc. Symp. Proc. 687 B6. 3.

Google Scholar

[9] Edgar J H, Strite S, Akasaki I, Amano H, and Wetzel C (eds. ) 1999 Processing and Applications of Gallium Nitride and Related Semiconductors (E M I S Datareviews Series) (Institution of Electrical Engineers) London, UK.

Google Scholar

[10] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653.

Google Scholar

[11] Ambacher O et al. 2002 J. Phys.: Condens. Matter. 14 3399.

Google Scholar

[12] Eickhoff M et al 2003 Phys. Status Solidi (c) 0 (1908).

Google Scholar

[13] Stutzmann M, Steinhoff G, Eickhoff M, Ambacher O, Nebel C E, Schalwig J, Neuberger R and Müller G 2002 Diam. Relat. Mater. 11 886.

DOI: 10.1016/s0925-9635(02)00026-2

Google Scholar

[14] Pearton S J, Kang B S, Kim S, Ren F, Gila B P, Abernathy C R, Lin J and Chu S N G 2004 J. Phys.: Condens. Mater. 16 R961.

Google Scholar

[15] Eickhoff M, Ambacher O, Krötz G and Stutzmann M 2001 J. Appl. Phys. 90 3383.

Google Scholar

[16] Kang B S et al. J 2005 Appl. Phys. Lett. 86 253502.

Google Scholar

[17] Kang B S et al. 2003 Appl. Phys. Lett. 83 4845.

Google Scholar

[18] Zimmermann T, Neuburger M, Benkart P, Hernández-Guillén F J, Pietzka C, Kunze M, Daumiller I, Dadgar A, Krost A and Kohn E 2006 IEEE Electron Device Lett. 27 309.

DOI: 10.1109/led.2006.872918

Google Scholar

[19] Brueckner K, Niebelschuetz F, Tonisch K, Michael S, Dadgar A, Krost A, Cimalla V, Ambacher O, Stephan R, and Hein M A, 2008 Appl. Phys. Lett. 93 173504.

DOI: 10.1063/1.3002296

Google Scholar

[20] Zelenka J 1986 Piezoelectric Resonators and their applications (Amsterdam, Oxford, New York, Tokyo: Elsevier).

Google Scholar

[21] DeVoe D L and Pisano A P 1997 J. Microelectromech. Syst. 6 266.

Google Scholar

[22] Doppalapudi D, Mlcak R, Chan J, Tuller H L, Abell J, Li W and Moustakas T D 2004 Electrochem. Soc. Proc. 2004-06 287.

Google Scholar

[24] Cimalla V, Pezoldt P, and Ambacher O, 2007 J. Phys. D: Appl. Phys. 40 6386.

Google Scholar

[25] DeVoe D L 2001 Sens. Actuators A 88 236.

Google Scholar

[26] Kouh T, Karabacak D, Kim D H and Ekinci K L 2005 Appl. Phys. Lett. 86 013106.

Google Scholar

[27] Piazza G and Pisano A P 2007 Sens. Actuators A, doi: 10. 1016/j. sna. 2006. 12. 003.

Google Scholar

[28] Elwenspoek M and Jansen H V 2004 Silicon Micromachining (Cambridge, UK: Cambridge University Press).

Google Scholar

[29] Tonisch K, Cimalla V, Niebelschütz F, Romanus H, Eickhoff M, and Ambacher O, 2007 phys. stat. sol. (c) 7 2248.

DOI: 10.1002/pssc.200674813

Google Scholar

[30] Tonisch K, Niebelschuetz F, Cimalla V, Romanus H, and Ambacher O, 2007 MRS Symp. Proc. 955 I16-03.

DOI: 10.1557/proc-0955-i16-03

Google Scholar

[31] Stauden Th, Niebelschütz F, Tonisch K, Cimalla V, Ecke G, Haupt Ch, and Pezoldt J, 2008 Mater. Sci. Forum 600-603 651.

DOI: 10.4028/www.scientific.net/msf.600-603.651

Google Scholar

[32] Tonisch K: Thesis, Technical University Ilmenau, (2009).

Google Scholar

[33] Förster Ch, Cimalla V, Brueckner K, Lebedev V, Stephan R, Hein M and Ambacher O 2005 Phys. Status Solidi (a) 202 671.

DOI: 10.1002/pssa.200460471

Google Scholar

[34] Tonisch K, Buchheim C, Niebelschütz F, Schober A, Gobsch G, Goldhahn R, Cimalla V, and Ambacher O., 2008 J. Appl. Phys. 104 084516.

DOI: 10.1063/1.3005885

Google Scholar

[35] Niebelschütz F, Cimalla V, Tonisch K, Haupt Ch, Brückner K, Stephan H, Hein M E, and Ambacher O, 2008 phys. stat. sol. (c) 5 (1914).

DOI: 10.1002/pssc.200778424

Google Scholar

[36] Niebelschütz F, Cimalla V, Brückner K, Stephan H, Tonisch K, Hein M A, and Ambacher O, 2008 Proc. IMechE Vol. 221 Part N: J. Nanoengineering and Nanosystems, 221 (N2) 59.

DOI: 10.1243/17403499jnn100

Google Scholar

[37] Cimalla V, Niebelschütz F, Tonisch K, Foerster Ch, Brückner K, Cimalla I, Friedrich T, Pezoldt J, Stephan H, Hein M E, and Ambacher O, 2007 Sens. Actuat. B 126 24.

DOI: 10.1016/j.snb.2006.10.049

Google Scholar

[38] Tonisch K, Cimalla V, Foerster Ch, Romanus H, Ambacher O, and Dontsov D, 2006 Sens. Actuat. A 132 658.

DOI: 10.1016/j.sna.2006.03.001

Google Scholar

[39] K. Brueckner, Cimalla V, Niebelschütz F, Stephan H, Tonisch K, Ambacher O, Hein M A, 2007 J. Micromech. Microeng. 17 (2016).

DOI: 10.1088/0960-1317/17/10/013

Google Scholar

[40] K. Brueckner et al., 2009 Proc. of the 22nd IEEE International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 2009, p.927.

Google Scholar

[41] Ballantine D S, White R M, Martin S J, Ricco A J, Zellers E T, Frye G C, and Wohltjen H, Acoustic wave sensors, (Academic Press, 1st edn., San Diego, 1997), p.115.

DOI: 10.1016/b978-012077460-9/50001-0

Google Scholar

[42] Bjurström J, Katardjiev I, and Yantchev V, 2005 Appl. Phys. Lett. 104 154103.

Google Scholar

[43] Jiménez Riobóo R J, Rodríguez-Cañas E, Vila M, Prieto C, Calle F, Palacios T, Sánchez M A, Omnès O, Ambacher O, Assouar B, and Elmazria O, 2002 J. Appl. Phys. 92 6868.

DOI: 10.1063/1.1517728

Google Scholar

[44] Brückner K, Cimalla V, Niebelschütz F, Stephan H, Tonisch K, Ambacher O, and Hein M A, 2007 6th IEEE Conference on Sensors October 28 - 31, 2007, Hyatt Regency Atlanta, Atlanta, Georgia, USA, 2007, p.1251.

DOI: 10.1109/icsens.2007.4388636

Google Scholar

[45] Tonisch K, F. Will, Förster Ch, V. Cimalla, K. Brueckner, Hein M E, and Ambacher O, 2005 7. Dresdner Sensor-Symposium, Dresden, 12. -14. 12. 2005, Dresden, TUD Press, Dresden p.239.

Google Scholar

[46] Wang J, Ren Z, and Nguyen C-T C, 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 51, 1607.

Google Scholar

[47] Lee J-E Y, Zhu Y, and Seshia A A, 2008 J. Micromech. Microeng., 18 064001.

Google Scholar