Development of Visible-Light-Driven TiO2 and SrTiO3 Photocatalysts Doped with Metal Cations for H2 or O2 Evolution

Article Preview

Abstract:

This review paper represents photocatalytic properties of metal cation-doped TiO2 (rutile) and SrTiO3 photocatalysts for O2 evolution from an aqueous silver nitrate solution and H2 evolution from an aqueous methanol solution under visible light irradiation. Photocatalytic activities for the O2 evolution of Cr/Sb and Rh/Sb-codoped TiO2 are strongly dependent on the codoping ratio and the amount of doped chromium and rhodium. The codopant controls the oxidation number of doped chromium and rhodium. Rh-doped SrTiO3 in which the doped Rh species possesses a reversible redox property is active for the H2 evolution reaction under visible light irradiation. Overall water splitting under visible light irradiation proceeds with Z-scheme photocatalyst systems consisting of the Rh-doped SrTiO3 as a H2 evolution photocatalyst combined with BiVO4 as an O2 evolution photocatalyst and an Fe3+/Fe2+ electron mediator.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 162)

Pages:

29-40

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.S. Wrighton, D.S. Ginley, P.T. Wolczanski, A.B. Ellis, D.L. Morse and A. Linz: Proc. Nat. Acad. Sci. USA Vol. 72 (1975), p.1518.

DOI: 10.1073/pnas.72.4.1518

Google Scholar

[2] H. Yoneyama, H. Sakamoto and H. Tamura: Electrochim. Acta Vol. 20 (1975), p.341.

Google Scholar

[3] A.B. Ellis, S.W. Kaiser and M.S. Wrighton: J. Phys. Chem. Vol. 80 (1976), p.1325.

Google Scholar

[4] A.J. Nozik: Appl. Phys. Lett. Vol. 29 (1976), p.150.

Google Scholar

[5] H.H. Kung, H.S. Jarret, A.W. Sleight and A. Ferretti: J. Appl. Phys. Vol. 48 (1977), p.2463.

Google Scholar

[6] O. Khaselev and J. A. Turner: Science Vol. 280 (1998), p.425.

Google Scholar

[7] M. Grätzel: Nature Vol. 414 (2001), p.338, and references therein.

Google Scholar

[8] S. Sato and J.M. White: Chem. Phys. Lett. Vol. 72 (1980), p.83.

Google Scholar

[9] K. Domen, S. Naito, S. Soma, M. Onishi and K. Tamaru: J. Chem. Soc., Chem. Commun. (1980), p.543.

DOI: 10.1039/c39800000543

Google Scholar

[10] J. -M. Lehn, J. -P. Sauvage and R. Ziessel: Nouv. J. Chim. Vol. 4 (1980), p.623.

Google Scholar

[11] T. Kawai and T. Sakata: Chem. Phys. Lett. Vol. 72 (1980), p.87.

Google Scholar

[12] K. Yamaguti and S. Sato: J. Chem. Soc., Faraday Trans. 1 Vol. 81 (1985), p.1237.

Google Scholar

[13] K. Domen, A. Kudo and T. Onishi: J. Phys. Chem. Vol. 90 (1986), p.292.

Google Scholar

[14] K. Yamaguti and S. Sato: Nouv. J. Chim. Vol. 10 (1986), p.217.

Google Scholar

[15] K. Domen, A. Kudo and T. Onishi: J. Catal. Vol. 102 (1986), p.92.

Google Scholar

[16] A. Kudo, K. Domen, K. Maruya and T. Onishi: Chem. Phys. Lett. Vol. 133 (1987), p.517.

Google Scholar

[17] Y. Sakata, Y. Hirata, K. Miyahara, H. Imamura and S. Tsuchiya: Chem. Lett. (1993), p.391.

Google Scholar

[18] S. Tabata, N. Nishida, Y. Masaki and K. Tabata: Catal. Lett. Vol. 34 (1995), p.245.

Google Scholar

[19] K. Sayama and H. Arakawa: J. Chem. Soc., Faraday Trans. Vol. 93 (1997), p.1647.

Google Scholar

[20] S. -C. Moon, H. Mametsuka, E. Suzuki and M. Anpo: Chem. Lett. (1998), p.117.

Google Scholar

[21] D.W. Hwang, H.G. Kim, J. Kim, K.Y. Cha, Y.G. Kim and J.S. Lee: J. Catal. Vol. 193 (2000), p.40.

Google Scholar

[22] K. Domen, J.N. Kondo, M. Hara and T. Takata: Bull. Chem. Soc. Jpn. Vol. 73 (2000), p.1307, and references therein.

Google Scholar

[23] K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa: Chem. Commun. (2001), p.2416.

DOI: 10.1039/b107673f

Google Scholar

[24] H. Kato, K. Asakura and A. Kudo: J. Am. Chem. Soc. Vol. 125 (2003), p.3082.

Google Scholar

[25] J. Sato, N. Saito, H. Nishiyama and Y. Inoue: J. Phys. Chem. B Vol. 107 (2003), p.7965.

Google Scholar

[26] A. Kudo, H. Kato and I. Tsuji: Chem. Lett. Vol. 33 (2004), p.1534, and references therein.

Google Scholar

[27] Y. Miseki, H. Kato and A. Kudo: Chem. Lett. Vol. 34 (2005), p.54.

Google Scholar

[28] R. Abe, T. Takata, H. Sugihara and K. Domen: Chem. Commun. (2005), p.3829.

Google Scholar

[29] J. Kim, D.W. Hwnag, H.G. Kim, S.W. Bae, J.S. Lee, W. Li and S.H. Oh: Top. Catal. Vol. 35 (2005), p.295.

Google Scholar

[30] J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen and Y. Inoue: J. Am. Chem. Soc. Vol. 127 (2005), p.4150.

Google Scholar

[31] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue and K. Domen: Nature Vol. 440 (2006), p.295.

DOI: 10.1038/440295a

Google Scholar

[32] Y. Miseki, H. Kato and A. Kudo: Chem. Lett. Vol. 35 (2006), p.1052.

Google Scholar

[33] A. Kudo: Int. J. Hydrogen Energy Vol. 32 (2007), p.2673, and references therein.

Google Scholar

[34] A. Kudo: Pure Appl. Chem. Vol. 79 (2007), p.1917, and references therein.

Google Scholar

[35] N. Arai, N. Saito, H. Nishiyama, K. Domen, H. Kobayashi, K. Sato and Y. Inoue: Catal. Today Vol. 129 (2007), p.407.

Google Scholar

[36] K. Maeda, N. Saito, D. Lu, Y. Inoue and K. Domen: J. Phys. Chem. C Vol. 111 (2007), p.4749.

Google Scholar

[37] H. Kato, Y. Sasaki, A. Iwase and A. Kudo: Bull. Chem. Soc. Jpn. Vol. 80 (2007), p.2457.

Google Scholar

[38] Y. Sasaki, A. Iwase, H. Kato and A. Kudo: J. Catal. Vol. 259 (2008), p.133.

Google Scholar

[39] Y. Sakata, Y. Matsuda, T. Yanagida, K. Hirata, H. Imamura and K. Teramura: Catal. Lett. Vol. 125 (2008), p.22.

Google Scholar

[40] A. Fujishima and K. Honda: Nature Vol. 238 (1972), p.37.

Google Scholar

[41] J.G. Mavroides, J.A. Kafalas and D.F. Kolesar: Appl. Phys. Lett. Vol. 28 (1976), p.241.

Google Scholar

[42] K. Maeda and K. Domen: J. Phys. Chem. C Vol. 111 (2007), p.7851, and references therein.

Google Scholar

[43] Y. Sakata, T. Yamamoto, T. Okazaki, H. Imamura and S. Tsuchiya: Chem. Lett. (1998), p.1253.

Google Scholar

[44] T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi and M. Matsumura: J. Photochem. Photobiol. A Vol. 127 (1999), p.107.

Google Scholar

[45] G. Campet, M.P. Dare-Edwards, A. Hamnet and J.B. Goodenough: Nouv. J. Chim. Vol. 4 (1980), p.501.

Google Scholar

[46] A. Mackor and G. Blasse: Chem. Phys. Lett. Vol. 77 (1981), p.6.

Google Scholar

[47] R.U.E. t. Lam, L.G.J. d. Haart, A.W. Wiersma, G. Blasse, A.H.A. Tinnemans and A. Mackor: Mater. Res. Bull. Vol. 16 (1981), p.1593.

Google Scholar

[48] Y. Matsumoto, T. Shimizu and E. Sato: Electrochim. Acta. Vol. 27 (1982), p.419.

Google Scholar

[49] I. Watanabe, Y. Matsumoto and E. Sato: J. Electoroanal. Chem. Vol. 133 (1982), p.359.

Google Scholar

[50] J. -M. Herrmann, J. Disdier and P. Pichat: Chem. Phys. Lett. Vol. 108 (1984), p.618.

Google Scholar

[51] N. Serpone and D. Lawless: Langmuir Vol. 10 (1994), p.643.

Google Scholar

[52] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science Vol. 293 (2001), p.269.

Google Scholar

[53] S.U.M. Khan, M. Al-Shahry and W.B. Ingler Jr.: Science Vol. 297 (2002), p.2243.

Google Scholar

[54] T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita and K. Asai: J. Appl. Phys. Vol. 93 (2003), p.5156.

Google Scholar

[55] T. Ohno, T. Mitsui and M. Matsumura, Chem. Lett. Vol. 32 (2003), p.364.

Google Scholar

[56] R. Niishiro, H. Kato and A. Kudo: Phys. Chem. Chem. Phys. Vol. 7 (2005), p.2241.

Google Scholar

[57] H. Kato and A. Kudo: J. Phys. Chem. B Vol. 106 (2002), p.5029.

Google Scholar

[58] R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura and A. Kudo: J. Phys. Chem. C Vol. 111 (2007), p.17420.

Google Scholar

[59] T. Ikeda, T. Nomoto, K. Eda, Y. Mizutani, H. Kato, A. Kudo and H. Onishi: J. Phys. Chem. C Vol. 112 (2008), p.1167.

Google Scholar

[60] T. Ishii, H. Kato and A. Kudo: J. Photochem. Photobiol. A Vol. 163 (2004), p.181.

Google Scholar

[61] R. Konta, T. Ishii, H. Kato and A. Kudo: J. Phys. Chem. B Vol. 108 (2004), p.8992.

Google Scholar

[62] A.A. Krasnovsky and G.P. Brin: Dokl. Akad. Nauk. Vol. 147 (1962), p.656.

Google Scholar