Optical Properties and Electronic Structure of LaNi5-XCux (x=0–1.2) Intermetallic System

Article Preview

Abstract:

Optical properties of the LaNi5-xCux (x = 0, 0.6, 1, 1.2) compounds were studied. It was shown that substitution of copper for nickel led to noticeable changes in the optical conductivity spectra. Calculations of the electronic structure of compounds with x = 0, 1, 2 were performed using a generalized gradient approximation. The interband optical conductivity of these intermetallics was calculated. The optical ellipsometrical measurements and theoretical calculations testify to the appearance of a broad absorption structure associated with the Cu 3d  Ni 3d electron transitions and increasing with the growth of copper content.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 168-169)

Pages:

529-532

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.T. Tai, B.T. Hang, N.P. Thuy and T.D. Hien: J. Magn. Magn. Mater. Vol. 262 (2003), p.485.

Google Scholar

[2] J.J.G. Willems and K.H.J. Buschow: J. Less-Common Met. Vol. 129 (1987), p.13.

Google Scholar

[3] K.H.J. Buschow, P.C.P. Bouten and A.R. Miedema: Rep. Prog. Phys. Vol. 45 (1982), p.937.

Google Scholar

[4] T. Sakai, M. Matsuoka and C. Iwakura, in: Handbook on the Physics and Chemistry of Rare Earth, edited by K.A. Gschneider, Jr. and L. Eyring, volume 21, chapter 142, Elsevier Science (1995), p.135.

Google Scholar

[5] J.B. Yang, C.Y. Tai, G.K. Marasinghe, G.D. Waddill, O.A. Pringle and W.J. James: J. Appl. Phys. Vol. 89 (2001), p.7311.

Google Scholar

[6] E. Burzo, S.G. Chiuzbăian, M. Neumann and L. Chioncel: J. Phys.: Condens. Matter Vol. 14 (2002), p.8057.

Google Scholar

[7] A. Szajek, M. Jurczyk, M. Nowak and M. Makowiecka: Phys. Stat. Sol. (a) Vol. 196 (2003), p.252.

DOI: 10.1002/pssa.200306399

Google Scholar

[8] E. Burzo, S.G. Chiuzbăian, L. Chioncel and M. Newmann: J. Phys.: Condens. Matter Vol. 12 (2000), p.5897.

Google Scholar

[9] A.G. Kuchin, A.S. Ermolenko, Yu.A. Kulikov, V.I. Khrabrov, E.V. Rosenfeld, G.M. Makarova, T.P. Lapina and Ye.V. Belozerov: J. Magn. Magn. Mater. Vol. 303 (2006), p.119.

DOI: 10.1016/j.jmmm.2005.10.235

Google Scholar

[10] E. Burzo, S. Chiuzbaian, L. Chioncel, A. Takacs, M. Neumann and I. Creanga: Moldavian Journ. Phys. Scienc. Vol. 5 (2006), p.50.

Google Scholar

[11] G.E. Grechnev, A.V. Logosha, I.V. Svechkarev, A.G. Kuchin, Yu.A. Kulikov, P.A. Korzhavyi and O. Eriksson: Low. Temp. Phys. Vol. 32 (2006), p.1498.

DOI: 10.1063/1.2400691

Google Scholar

[12] S.K. Malik, F.J. Arlinghaus and W.E. Wallace: Phys. Rev. B Vol. 25 (1982), p.6488.

Google Scholar

[13] J.B. Yang, C.Y. Tai, G.K. Marasinghe, G.D. Waddill, O.A. Pringle, W.J. James and Y. Kong: Phys. Rev. B Vol. 63 (2000), 014407.

Google Scholar

[14] M. Gupta: J. Alloys Compd. Vol. 293-295 (1999), p.190.

Google Scholar

[15] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, et. al.: J. Phys.: Condens. Matter Vol. 21 (2009), 395502.

Google Scholar

[16] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[17] A.M. Rappe, K.M. Rabe, E. Kaxiras and J.D. Joannopoulos: Phys. Rev. B Vol. 41 (1990), p.1227.

Google Scholar

[18] J.H. Weaver, A. Franciosi, W.E. Wallace and H.K. Smith: J. Appl. Phys. Vol. 51 (1980), p.5847.

Google Scholar

[19] J.C. Fuggle, F.U. Hillebrecht, R. Zeller, Z. Zołnierek, P.A. Bennett and Ch. Freiburg: Phys. Rev. B Vol. 27 (1982), p.2145.

Google Scholar

[20] Yu.V. Knyazev, Yu.I. Kuz'min, A.G. Kuchin, A.V. Lukoyanov and I.A. Nekrasov: Opt. Spectrosc. Vol. 104 (2008), p.360.; Phys. Metals Metallogr. Vol. 107 (2009), p.173.

Google Scholar