Heteroepitaxy Crystallography in Low Dimensional Nanostructures

Article Preview

Abstract:

Low dimensional nanostructures, e.g. nanowires, self-assembled through heteroepitaxy, present a variety of crystallographic features that do not always follow conventional V-W or S-K growth mode. Applying Δg parallelism rules and edge-to-edge matching (E2EM) model in β-DySi2/Si and CoSi2/Si systems provides a better understanding of the natural preference of the interface orientation and the orientation relationship (OR) during heteroepitaxial growth. This may help improving the quality of nanowires through optimizing the substrate orientation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1307-1312

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.E. Ayers: Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization (Taylor & Francis Group, New York 2007).

Google Scholar

[2] M. Volmer and A. Weber: Z. Phys. Chem. Vol. 119 (1926), p.277.

Google Scholar

[3] I.N. Stranski and Von L. Krastanow: Akad. Wiss. Lit. Mainz Math. -Natur. Kl. IIb Vol. 146 (1939), p.797.

Google Scholar

[4] J. H. Claassen, S. A. Wolf, S.B. Qadri, et al: J. Cryst. Growth Vol. 81 (1987), p.557.

Google Scholar

[5] M. Shigeta, Y. Fujii, A. Ogura, et al: J. Cryst. Growth Vol. 93 (1988), p.766.

Google Scholar

[6] J. Plitzko, M. Rösler and K.G. Nickel: Diam. Relat. Mater. Vol. 6 (1997), p.935.

Google Scholar

[7] F. Riesz, J. Varrio, A. Pesek, et al: Appl. Surf. Sci. Vol. 75 (1994), p.248.

Google Scholar

[8] M. Peruzzil, J.D. Pedarnig, D. Bäuerle et al: Appl. Phys. A Vol. 79 (2004), p.1873.

Google Scholar

[9] Z-A. He, D.J. Smith and P.A. Bennett: Appl. phys. Lett. Vol. 86 (2005), 143110.

Google Scholar

[10] A. Riemann, S. Fölsch and K.H. Rieder: Phys. Rev. B Vol. 72 (2005), 125423.

Google Scholar

[11] W-Z. Zhang, in: Proc of 4th Inter. Conf. on Solid-Solid Phase Transformations, edited by M. Koiwa, K. Otsuka and T. Miyazaki. Japan Inst. of Metals (1999), p.581.

Google Scholar

[12] W-Z Zhang and G.C. Weatherly: Prog. Mater. Sci. Vol. 50 (2005), p.181.

Google Scholar

[13] P.M. Kelly and M-X Zhang: Mater. Forum Vol. 23 (1999), p.41.

Google Scholar

[14] P.M. Kelly and M-X Zhang: Metall. Mater. Trans. A Vol. 37A (2006), p.833.

Google Scholar

[15] K. N. Tu, R.D. Thompson and B.Y. Tsaur: Appl. Phys. Lett. Vol. 38 (1981), p.626.

Google Scholar

[16] Z. He, D.J. Smith and P.A. Bennett: Appl. Phys. Lett. Vol 86 (2005), 143110.

Google Scholar

[17] Z. He, D.J. Smith and P. A. Bennett: Phys. Rev. B Vol. 70 (2004), 241402.

Google Scholar

[18] G. Ye, J. Nogami and M.A. Crimp: Thin Solid Films Vol. 497 (2006), 48.

Google Scholar

[19] J. Nogami, B.Z. Liu, M.V. Katkov, et al: Phys. Rev. B Vol. 63 (2001), 233305.

Google Scholar

[20] C. Preinesberger, S.K. Becker, S. Vandre, et al: J. Appl. Phys. Vol 91 (2002), 1695.

Google Scholar

[21] Z. He, D.J. Smith and P.A. Bennett: Appl. Phys. Lett. Vol 83 (2003), 5292.

Google Scholar

[22] M-X. Zhang and P. M. Kelly: Scripta. Mater. Vol 52 (2005), 963.

Google Scholar

[23] W-Z. Zhang, F. Ye, C. Zhang, Y. Qi and H-S. Fang: Acta Mater. Vol. 48 (2000), p.2209.

Google Scholar

[24] J. Wu, W-Z. Zhang, X-F. Gu: Acta Mater. Vol. 57 (2009), p.635.

Google Scholar

[25] F. Ye and W-Z. Zhang: Acta Mater. Vol. 50 (2002), p.2761.

Google Scholar

[26] D. Qiu, P.M. Kelly and M-X. Zhang: Scripta Mater. Vol. 60 (2009), p.787.

Google Scholar

[27] Z. He, D.J. Smith and P.A. Bennett: Phy. Rev. Lett. Vol. 93 (2004), 256102.

Google Scholar