Special Application Magnetorheological Valve Numerical and Experimental Analysis

Article Preview

Abstract:

The paper addresses analytical, numerical and experimental aspects of the design of magnetorheological (MR) fluid valve. Magnetic flux in valve’s cross-section is analysed with the help of finite element method (FEM) software. Based on the magnetic field intensity distribution within valve’s MR fluid annular gap, simulation model of the shock absorber equipped with newly designed MR valves is developed. Prototypes of MR valve are built and embedded in the stationary barrier of the rotary shock absorber, instead of standard, passive check valves. Simulation and preliminary experimental results comprising resistance force values as a function of angular displacement and angular velocity are presented.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 177)

Pages:

102-115

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ai H.X., Wang D.H., Liao W.H.: Design and Modelling of a Magnetorheological Valve with Both Annular and Radial Flow Paths. J. Int. Mat. Syst. Struct., vol. 17 (2006).

Google Scholar

[2] Browne A.L. at al.: Bi-fold valve-type magnetorheological fluid energy absorbing device, US 7900755 B2 (2011).

Google Scholar

[3] Grunwald A., Olabi A. G.: Design of magneto-rheological (MR) valve. Sensors and Actuators. no. A 148, pp.211-223 (2008).

DOI: 10.1016/j.sna.2008.07.028

Google Scholar

[4] Nguyen Q. H., Han Y. M., Choi S. B., Wereley N. M.: Geometry optimization of MR valves constrained in a specific volume using the finite element method. Smart Materials and Structures. no. 16, pp.2242-2252, (2007).

DOI: 10.1088/0964-1726/16/6/027

Google Scholar

[5] Martynowicz P., Szydło Z.: Special Application Magnetorheological Valve Design Study. Scientific Aspects of Unmanned Mobile Vehicle, PTMTS, Kielce (2010).

Google Scholar

[6] Efi Ed Fagan Inc.: Soft Magnetic Alloys, www. edfagan. com.

Google Scholar

[7] Kowal J., Martynowicz P., Sapiński B., Szydło Z.: Patent application no. P-391189 (2010).

Google Scholar

[8] Kollek W.: Wrocław University of Technology, Wrocław (2004).

Google Scholar

[9] Chooi W.W., Oyadiji S.O.: Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions. Computers and Structures 86, pp.473-482, (2008).

DOI: 10.1016/j.compstruc.2007.02.002

Google Scholar

[10] Li W. H., Du H., Guo N. Q.: Finite Element Analysis and Simulation Evaluation of a Magnetorheological Valve. Int. J. Adv. Manuf. Technol. no. 21, pp.438-445, (2003).

Google Scholar

[11] Manring N. D.: Hydraulic Control Systems, Wiley&Sons, New Jersey (2005).

Google Scholar

[12] Song X., Ahmadian M., Southward S.C.: Modeling Magnetorheological Dampers with Application of Nonparametric Approach. J. Int. Mat. Syst. Struct., Vol. 16 (2005).

Google Scholar

[13] Lord Co.: MRF-140CG Magneto-Rheological Fluid. Lord technical data, (2008).

Google Scholar

[14] Kciuk M., Turczyn R., Kciuk S., Mężyk A.: PL392656 (2010).

Google Scholar