Model of a Squeeze Mode Magnetorheological Mount

Article Preview

Abstract:

Recent advances in the research of magnetorheological (MR) fluid based devices have indicated the opportunities for squeeze mode devices using the smart fluids. The mode seems suitable for small amplitude and high force applications. Therefore, it is of a research and engineering interest to explore the model of a controlled squeeze mode MR mount (damper). As such, in the paper the authors highlight the model of a squeeze mode hydraulic mount, then present the simulation results in the form of dynamic stiffness and damping vs. frequency plots, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 177)

Pages:

116-124

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R. Jolly, J. W. Bender, J. D. Carlson, Properties and applications of magnetorheological fluids. In Proceedings of the SPIE Conference of the International Society of Optical Engineers (Ed. L. P. Davis), 3327 (1998) 262–275.

Google Scholar

[2] Information on http: /www. bwigroup. com.

Google Scholar

[3] Informaton on http: /www. lord. com.

Google Scholar

[4] S. Gopalswamy S., S. M. Linzell, G. L. Jones, W. C. Kruckemeyer, G. L. Johnston, Magnetorheological fan clutch, US Patent No. 5, 896, 965 (1999).

Google Scholar

[5] T. A. Baudendistel, S. G. Tewani, J. M. Shores, M. W. Long, R. E. Longhouse, C. S. Namuduri, A. A. Alexandridis, Hydraulic mount with magnetorheological fluid, US Patent No. 6, 622, 995 B2 (2003).

Google Scholar

[6] P. N. Hopkins, J. D. Fehring, I. Lisenker, R. E. Longhouse, W. C. Kruckemeyer, M. L. Oliver, F. M. Robinson, A. A. Alexandridis, Magnetorheological fluid damper, US Patent N. 6, 311, 810 B1 (2001).

Google Scholar

[7] E. W. Wiliams, S. G. Rigby, J. L. Sproston, R. Stanway, Electorheological fluids applied to an automotive engine mount, J. Non-Newtonian Fluid Mech. 47 (1993) 221–238.

DOI: 10.1016/0377-0257(93)80052-d

Google Scholar

[8] J. L. Sproston, S. G. Rigby, E. W. Wiliams, R. Stanway, A numerical simulation of electrorheological fluids in oscillatory compressive squeeze flow, J. Phys. D: Appl. Phys. 27 (1994) 338–340.

DOI: 10.1088/0022-3727/27/2/023

Google Scholar

[9] M. R. Jolly, J. D. Carlson, Controllable squeeze film damping using magnetorheological fluids, In Proceedings of the 5th International Conference on New Actuators, Bremen (1996) 333–336.

Google Scholar

[10] R. Bolter, J. Janocha, Performance of long-stroke and low-stroke MR fluid dampers, In Proceedings of the SPIE Conference of the International Society of Optical Engineers (Ed. L. P. Davis) 3327 (1998), 303–313.

DOI: 10.1117/12.310693

Google Scholar

[11] S. R. Hong, S. B. Choi, W. J. Jung, W. B. Jeong, Vibration isolation using squeeze-mode ER mounts, J. Intelligent Material Systems and Structures 13 (2002) 421–424.

DOI: 10.1106/104538902026773

Google Scholar

[12] M. Brigley, Y. T. Choi, N. Wereley, S. B. Choi, Magnetorheological isolators using multiple fluid modes, J. Intelligent Material Systems and Structures, 18 (2007) 1143–1148.

DOI: 10.1177/1045389x07083129

Google Scholar

[13] N. T. Minh, A Novel Semi-Active Magnetorheological Mount for Vibration Isolation, Ph.D. dissertation (2009).

Google Scholar