[1]
Y. K. Atanassova, V. N. Popov, G. G. Bogachev, M. N. Iliev, C. Mitros, V. Psycharis, and M. Pissas, Raman- and infrared-active phonons in YBaCuFeO5: Experiment and lattice dynamics, Phys. Rev. B 47 (1993) 15201.
DOI: 10.1103/physrevb.47.15201
Google Scholar
[2]
M. J. Ruiz-Aragön, E. Morán, U. Amador, J. L. Martínez, N. H. Andersen, H. Ehrenberg, Low-temperature magnetic structure of YBaCuFeO5 and the effect of partial substitution of yttrium by calcium, Phys. Rev. B 58 (1998) 6291.
DOI: 10.1103/physrevb.58.6291
Google Scholar
[3]
A. W. Mombrú, C. Christides, A. Lappas, K. Prassides, M. Pissas, C. Mitros, D. Niarchos, Magnetic structure of the oxygen-deficient perovskite YBaCuFeO5+δ, Inorg. Chem. 33 (1994) 1255.
DOI: 10.1021/ic00085a008
Google Scholar
[4]
V. Caignaert, I. Mirebeau, F. Bourée, N. Nguyen, A. Ducouret, J. M. Greneche, B. Raveau, Crystal and magnetic structure of YBaCuFeO5, J. Solid State Chem. 114 (1995) 24.
DOI: 10.1006/jssc.1995.1004
Google Scholar
[5]
A. W. Mombrú, K. Prassides, C. Christides, R. Erwin, M. Pissas, C. Mitros, D. Niarchos, Neutron powder diffraction study (T=4. 2–300 K) and polarization analysis of YBaCuFeO5+δ, J. Phys.: Condens. Matter 10 (1998) 1247.
DOI: 10.1088/0953-8984/10/6/008
Google Scholar
[6]
J. Lindén, M. Kochi, K. Lehmus, T. Pietari, M. Karppinen, H. Yamauchi, Interplay between Cu and Fe valences in BaR (Cu0. 5Fe0. 5)2O5+δ double perovskites with R=Lu, Yb, Y, Eu, Sm, Nd, and Pr, J. Solid State Chem. 166 (2002) 118.
DOI: 10.1006/jssc.2002.9567
Google Scholar
[7]
B. Kundys, A. Maignan, and Ch. Simon, Multiferroicity with high-TC in ceramics of the YBaCuFeO5 ordered perovskite, Appl. Phys. Lett. 94 (2009) 072506.
DOI: 10.1063/1.3086309
Google Scholar
[8]
X. N. Ying, Z. C. Xu, A mechanical spectrum study of double perovskite Y1-xCaxBaCuFeO5+δ, Solid State Commun. 146 (2008) 269.
DOI: 10.1016/j.ssc.2008.02.017
Google Scholar
[9]
M. Pissas, G. Kallias, V. Psycharis, H. Gamari-Seale, D. Niarchos, A. Simopoulos, R. Sonntag, Structural, magnetic, and Mossbauer studies of the PrBaCuFeO5+y compound, Phys. Rev. B 55 (1997) 397.
DOI: 10.1103/physrevb.55.397
Google Scholar
[10]
K. Lehmus, M. Kochi, M. Karppinen, H. Yamauchi, and L. Niinistö, Variation of oxygen stoichiometry in BaRE(Cu0. 5Fe0. 5)2O5+δ double perovskites upon heat treatments under ambient and high pressure, International Journal of Inorganic Materials, 2 (2000).
DOI: 10.1016/s1466-6049(00)00018-0
Google Scholar
[11]
A. S. Nowick, and B. Berry, An elastic Relaxation in Crystalline Solid, first ed., New York, Academic, (1972).
Google Scholar
[12]
F. Yan, X. B. Chen, P. Bao, Y. N. Wang, J. S. Liu, Internal friction and Young's modulus of SrBi2Ta2O9 ceramics, J. Appl. Phys. 87 (2000) 1453.
DOI: 10.1063/1.372034
Google Scholar
[13]
Q. F. Fang, X. P. Wang, Low frequency internal friction of oxide-ion conductor La2Mo2O9, Solid State Phenomena, 89 (2003) 293.
Google Scholar
[14]
X.N. Ying, Y.H. Yuan, Y.N. Huang, Y.N. Wang, A mechanical spectrum study of bilayer cuprate La1. 82Sr0. 18CaCu2O6+δ, Solid State Commun. 142 (2007) 373.
DOI: 10.1016/j.ssc.2007.03.024
Google Scholar
[15]
A. McKinlay, P. Connor, John T. S. Irvine, and W. Zhou, Structural Chemistry and Conductivity of a Solid Solution of YBa1-xSrxCo2O5+δ, J. Phys. Chem. C, 111 (2007) 19120.
Google Scholar
[16]
X.N. Ying, Z.C. Xu, High temperature sodium ordering transition in NaxCoO2 studied by mechanical spectrum, J. Appl. Phys. 105 (2009) 063504.
DOI: 10.1063/1.3086621
Google Scholar