Internal Friction Study of Vacancy Hardening in B2 Fe Al Alloys

Article Preview

Abstract:

nternal friction behaviour of B2 FeAl alloys has been examined to reveal the correlation of the microplasticity and thermal vacancies. The internal friction peak for Fe60Al40 appears at around 550 K, and the peak height increases with increasing quenching temperature. The curves of internal friction against the strain amplitude shift to larger strain amplitude as the quenching temperature increases. Analysis of the amplitude-dependent internal friction provides the plastic strain of the order of 10-9 as a function of effective stress on dislocation motion. It is found that the microflow stress at the plastic strain of 1×10-9 increases linearly with the square root of the net peak height. Remarkably, the microflow stress decreases with rising temperature but turns to increase above 500 K when measured after holding for 1 h at test temperatures. The anomalous increase in the microflow stress is caused by the creation of thermal vacancies at intermediate temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

81-86

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.A. Chang, L.M. Pike, C.T. Liu, A.R. Bilbrey, D.S. Stone, Correlation of the hardness and vacancy concentration in FeAl, Intermetallics 1 (1993) 107-115.

DOI: 10.1016/0966-9795(93)90028-t

Google Scholar

[2] E.P. George, I. Baker, Thermal vacancies and the yield anomaly of FeAl, Intermetallics 6 (1998) 759-763.

DOI: 10.1016/s0966-9795(98)00063-6

Google Scholar

[3] D.G. Morris, The yield stress anomaly in Fe-Al alloys: the local climb lock model, Philos. Mag. A 71 (1995) 1281-1294.

DOI: 10.1080/01418619508244374

Google Scholar

[4] K. Yoshimi, S. Hanada, Positive temperature dependence of yield stress in B2 FeAl, in: R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal (Eds. ), Structural Intermetallics, TMS, Warrendale, PA, 1993, pp.475-482.

Google Scholar

[5] E.P. George, I. Baker, A model for the yield strength anomaly of Fe-Al, Philos. Mag. A 77 (1998) 737-750.

Google Scholar

[6] D.G. Morris, M.A. Munoz-Morris, A re-examination of the pinning mechanisms responsible for the stress anomaly in FeAl intermetallics, Intermetallics 18 (2010) 1279-1284.

DOI: 10.1016/j.intermet.2009.12.021

Google Scholar

[7] H. -E. Schaefer, B. Damson, M. Weller, E. Arzt, E.P. George, Thermal vacancies and high-temperature mechanical properties of FeAl, Phys. Stat. Sol. (a) 160 (1997) 531-540.

DOI: 10.1002/1521-396x(199704)160:2<531::aid-pssa531>3.0.co;2-7

Google Scholar

[8] I.S. Golovin, H. Nauhäuser, A. Rivière, A. Strahl, Anelasticity of Fe-Al alloys, revisited, Intermetallics 12 (2004) 125-150.

DOI: 10.1016/j.intermet.2003.10.003

Google Scholar

[9] J. Wu, F.S. Han, Z.Y. Gao, G.L. Hao, Q.Z. Wang, Anelasticity correlated to vacancies in B2 Fe-Al alloys, Phys. Stat. Sol. (a) 203 (2006) 485- 492.

DOI: 10.1002/pssa.200521404

Google Scholar

[10] J. Wu, F.S. Han, Q.Z. Wang, G.L. Hao, Z.Y. Gao, The internal friction peaks correlated to the relaxation of atomic defects in Fe47Al53 alloy. Intermetallics 15 (2007) 838-844.

DOI: 10.1016/j.intermet.2006.10.037

Google Scholar

[11] Y. Nishino, S. Asano, Determination of dislocation mobility from amplitude-dependent internal friction, Phys. Stat. Sol. (a) 151 (1995) 83-91.

DOI: 10.1002/pssa.2211510109

Google Scholar

[12] S. Asano, Theory of nonlinear damping due to dislocation hysteresis, J. Phys. Soc. Jpn. 29 (1970) 952-963.

DOI: 10.1143/jpsj.29.952

Google Scholar

[13] S. Asano, Analytical expressions of intrinsic internal friction based on damping data under inhomogeneous strain, Philos. Mag. 30 (1974) 1155-1159.

DOI: 10.1080/14786437408207267

Google Scholar

[14] R.L. Fleischer, Substitutional solution hardening, Acta Metall. 11 (1963) 203-209.

Google Scholar