Mechanical Relaxation Studies of Sub-Rouse Modes in Amorphous Polymers

Article Preview

Abstract:

Mechanical spectroscopy is a powerful tool for the investigation of molecular dynamics of amorphous polymers over a large temperature range and frequency scale. In this work, by using high precision shear mechanical spectroscopy tool, we have investigated the segmental dynamics from local segmental relaxation to sub-Rouse modes in a series of amorphous polymers. We have demonstrated the existence of sub-Rouse modes slower than the local segmental motion in amorphous polymers. The sub-Rouse modes exhibit a similar change of dynamics at the same temperature TB ~1.2 Tg, as the local segmental relaxation through the temperature dependence of relaxation time and relaxation strength. Furthermore, the crossover relaxation time of the sub-Rouse modes at TB is almost the same for all the polymers investigated, i.e. τα'(TB) = 10-1±0.5 s, which is independent of molecular weight and molecular structure. This remarkable finding indicates that solely the time scale of the relaxation determines the change in dynamics of the sub-Rouse modes. According to the coupling model, the crossover is suggested to be caused by the onset of strong intermolecular cooperativity below TB. Hence the results suggest that the sub-Rouse modes and their properties are generally found in amorphous polymers by mechanical spectroscopy, and reveal the cooperative nature of the sub-Rouse modes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

52-59

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. D. Ferry, Viscoelastic Properties of Polymers, third ed, Wiley, New York, (1980).

Google Scholar

[2] K. L. Ngai and D. J. Plazek, Rubber Chem. Technol. 68 (1995) 376-434.

Google Scholar

[3] D. J. Plazek, C. A. Bero, S. Neumeister, G. Floudas, G. Fytas and K. L. Ngai, Colloid. Polym. Sci. 272 (1994) 1430-1438.

DOI: 10.1007/bf00654173

Google Scholar

[4] K. L. Ngai, D. J. Plazek and A. K. Rizos, J. Polym. Sci., Part B: Polym. Phys. 35 (1997) 599-614.

Google Scholar

[5] M. L. Williams, J Polym Sci 62 (1962) S7-S8.

Google Scholar

[6] A. K. Rizos, T. Jian and K. L. Ngai, Macromolecules 28 (1995) 517-521.

Google Scholar

[7] D. J. Plazek, I. C. Chay, K. L. Ngai and C. M. Roland, Macromolecules 28 (1995) 6432-6436.

DOI: 10.1021/ma00123a007

Google Scholar

[8] M. Paluch, S. Pawlus, A. P. Sokolov and K. L. Ngai, Macromolecules 43 (2010) 3103-3106.

DOI: 10.1021/ma9027382

Google Scholar

[9] S. Pawlus, K. Kunal, L. Hong and A. P. Sokolov, Polymer 49 (2008) 2918-2923.

Google Scholar

[10] A. Arbe, A. C. Genix, S. Arrese-Igor, J. Colmenero and D. Richter, Macromolecules 43 (2010) 3107-3119.

DOI: 10.1021/ma902833h

Google Scholar

[11] R. Casalini, C. M. Roland and S. Capaccioli, J. Chem. Phys. 126 (2007) 184903.

Google Scholar

[12] X. B. Wu and Z. G. Zhu, J. Phys. Chem. B 113 (2009) 11147-11152.

Google Scholar

[13] X. B. Wu, H. G. Wang, C. S. Liu and Z. G. Zhu, Soft Matter 7 (2011) 579-586.

Google Scholar

[14] X. B. Wu, Q. L. Xu, J. P. Shui and Z. G. Zhu, Rev. Sci. Instrum. 79 (2008) 126105.

Google Scholar

[15] E. Donth, M. Beiner, S. Reissig, J. Korus, F. Garwe, S. Vieweg, S. Kahle, E. Hempel and K. Schroter, Macromolecules 29 (1996) 6589-6600.

DOI: 10.1021/ma951881a

Google Scholar

[16] P. G. Santangelo, K. L. Ngai and C. M. Roland, Macromolecules 26 (1993) 2682-2687.

Google Scholar

[17] K. L. Ngai, D. J. Plazek and R. W. Rendell, Rheol. Acta 36 (1997) 307-319.

Google Scholar

[18] X. A. Wang, G. S. Huang, J. R. Wu, Y. J. Nie and X. J. He, J. Phys. Chem. B 115 (2011) 1775-1779.

Google Scholar

[19] Y. F. Ding and A. P. Sokolov, Macromolecules 39 (2006) 3322-3326.

Google Scholar

[20] C. Riedel, A. Alegria, P. Tordjeman and J. Colmenero, Rheol. Acta 49 (2010) 507-512.

Google Scholar

[21] F. Stickel, E. W. Fischer and R. Richert, J. Chem. Phys. 102 (1995) 6251-6257.

Google Scholar

[22] R. Casalini, M. Paluch and C. M. Roland, J. Chem. Phys. 118 (2003) 5701-5703.

Google Scholar

[23] R. Casalini and C. M. Roland, Phys. Rev. B 71 (2005) 014210.

Google Scholar

[24] C. M. Roland, Soft Matter 4 (2008) 2316-2322.

Google Scholar

[25] R. Casalini, K. L. Ngai and C. M. Roland, Phys. Rev. B 68 (2003) 014201.

Google Scholar

[26] K. L. Ngai, Relaxation and Diffusion in Complex Systems, first ed, Springer, New York, (2011).

Google Scholar