Mechanical Spectroscopy of Nanocrystalline Metals and Nanometer-Thick Films: Characteristic Properties Originated in Nanostructures

Article Preview

Abstract:

Nanocrystalline (n-) Au shows a large internal friction accompanied with the modulus defects above ~200 K. After the creep test, the strong <111> preferred texture changed to rather random one but the mean grain size was unchanged. In situ STM observation indicated that the crystallites can independently move during the creep deformation. Quasi-two phase state composed of solid crystallites and anelastic/viscoelastic grain boundaries (GBs) is proposed to explain these characteristic mechanical properties of n-Au. Further, GBs show the glass-transition-like change at around 200 K, anelastic/viscoelastic transition at ~30 MPa and dynamical state change above ~200 MPa. The high vacancy-type-defect concentration plays an important role on stabilization of the quasi-two phase state in n-Au.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

42-51

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Meyers, A. Mishra, D.J. Benson, Progress in Materials Science 51 (2006) 427–556.

Google Scholar

[2] J. Schiøtz and K.W. Jacobsen, Science 301 (2003) 1357-1359.

Google Scholar

[3] J.B. Jeon, B. -J. Lee and Y.W. Chang, Scripta Mater. 64 (2011) 494–497.

Google Scholar

[4] V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee and H. Gleiter, Nature Mater. 1 (2002) 1-4.

Google Scholar

[5] H. V. Swygenhoven, P. M. Derlet and A. G. Froseth, Nature Mater. 3 (2004) 399-403.

Google Scholar

[6] F. Sansoz and K.D. Stevenson, Phys. Rev. B 83 (2011) 224101.

Google Scholar

[7] B.Q. Li, B. Li, Y.B. Wang, M.L. Suic and E. Ma, Scripta Mater. 64 (2011) 852–855.

Google Scholar

[8] B. Q. Li, M. L. Sui and S. X. Mao, Appl. Phy. Let. 97 (2010) 241912.

Google Scholar

[9] H. Li, H. Choo, Y. Ren, T. A. Saleh, U. Lienert, P. K. Liaw and F. Ebrahimi, Phys. Rev. Let. 101 (2008) 015502.

Google Scholar

[10] M. Grewer, J. Markmann, R. Karos, W. Arnold, R. Birringer, Acta Mater. 59 (2011) 1523–1529.

DOI: 10.1016/j.actamat.2010.11.016

Google Scholar

[11] Kai Zhang, J. R. Weertman and J. A. Eastman, Appl. Phys. Lett. 87 (2005) 061921.

Google Scholar

[12] R.A. Meirom, D.H. Alsem, A.L. Romasco, T. Clark, R.G. Polcawic, J.S. Pulskamp, M. Dubey, R.O. Ritchie, C.L. Muhlstein, Acta Mater. 59 (2011) 1141–1149.

DOI: 10.1016/j.actamat.2010.10.047

Google Scholar

[13] N. Yagi, A. Rikukawa, H. Mizubayashi, and H. Tanimoto, Phys. Rev. B 74 (2006) 144105.

Google Scholar

[14] H. Tanimoto, S. Sakai, E. Kita, and H. Mizubayashi, Mater. Trans. 44 (2003) 94-103.

Google Scholar

[15] S. Sakai, H. Tanimoto, and H. Mizubayashi, Acta Mater. 47 (1999) 211-217.

Google Scholar

[16] S. Sakai, H. Tanimoto, E. Kita, and M. Mizubayashi, Phys. Rev. B 66 (2002) 214106.

Google Scholar

[17] H. Tanimoto, S. Sakai and H. Mizubayashi, Mater. Sci. Eng., A370 (2004) 135-141.

Google Scholar

[18] R. Birringer, M. Hoffmann, and P. Zimmer, Phys. Rev. Let. 88 (2002) 206104.

Google Scholar

[19] J. Sheng, U. Welzel, E.J. Mittemeijer, Appl. Phys. Lett. 97 (2010) 153109.

Google Scholar

[20] J. Sheng, G. Rane, U. Welzel, E.J. Mittemeijer, Physica E43 (2011) 1155–1161.

Google Scholar

[21] Y. Fukai and H. Sugimoto, J. Phys.: Condens. Matter 19 (2007) 436201.

Google Scholar

[22] R.O. Simmons and R.W. Balluffi, Phys. Rev. 117 (1960) 52.

Google Scholar

[23] M. E. de Morton and G. M. Leak, Acta Metall. 14 (1966) 1140.

Google Scholar

[24] H. Tanimoto, N. Yagi, T. Yamada and H. Mizubayashi, Proc. of Int. Conf. on Advanced Technology in Experimental Mechanics 2003 (ATEM'03), Nagoya Congress Center, Nagoya, Japan, 10-12 Sept., 2003, ed. by Y. Akiniwa et al., The Japan Society of Mechanical Engineers, OS06W0399 (6pages).

DOI: 10.1299/jsmeatem.2003.243

Google Scholar

[25] B. Cai, Q. P. Kong, L. Lu, and K. Lu, Mater. Sci. Eng., A 286 (2000) 188.

Google Scholar

[26] B. Cai, Q. P. Kong, P. Cui, L. Lu, and K. Lu, Scr. Mater., 45 (2001) 1407.

Google Scholar

[27] N. Wang, Z. Wang, K. T. Aust, and U. Erb, Mater. Sci. Eng., A237 (1997) 150.

Google Scholar

[28] W. M. Yin, S. H. Whang, R. Mirshams, and C. H. Xiao, Mater. Sci. Eng., A301(2001) 18.

Google Scholar

[29] W. Blum and Y.J. Li, Scripta Mater. 57 (2007) 429-431.

Google Scholar

[30] R. L. Coble, J. Appl. Phys., 34 (1963) 1679.

Google Scholar

[31] T. Ulyanenkova, R. Baumbusch, T. Filatova, S. Doyle, A. Castrup, P. A. Gruber, J. Markmann, J. Weissmüller, T. Baumbach, H. Hahn and O. Kraft, Phys. Status Solidi A 206 (2009) 1795–1798.

DOI: 10.1002/pssa.200881599

Google Scholar

[32] Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Science 304 (2004) 273-276.

DOI: 10.1126/science.1095071

Google Scholar

[33] T. Konkova, S. Mironov, A. Korznikov, S.L. Semiatin, Acta Mater. 58 (2010) 5262–5273.

DOI: 10.1016/j.actamat.2010.05.056

Google Scholar

[34] P. B. Prangnell, A Y. Huang, J. Mater Sci. (2008) 43: 7280–7285.

Google Scholar

[35] M.E. Kassner and M. -T. Pérez-Prado, Progress in Mater. Sci. 45 (2000) 1-102.

Google Scholar

[36] D. Walgraef, Spatio-Temporal Pattern Formation-With Examples from Physics, Chemistry and Materials Science, Springer Verlag, Berlin, (1996).

Google Scholar

[37] H. Tanimoto, A. Fujiwara, K. Yamaura, H. Mizubayashi, Mater. Sci. and Engi. A, 521–522 (2009) 291–294: H. Tanimoto, K. Mutou, Y. Hosonuma, K. Yamamoto, H. Mizubayashi, ibid. 295–298.

DOI: 10.1016/j.msea.2008.09.120

Google Scholar