Recent Investigations on Grain Boundary Relaxation

Article Preview

Abstract:

In recent years, we have investigated the grain boundary (GB) internal friction in high-purity Al bicrystals with a wide variety of misorientations of tilt and twist GBs. The main results are reviewed and divided into the following sections: (1) the origin of the GB internal friction peak; (2) the individual behaviors of different types of GBs; and (3) the coupling effect and compensation effect involved in GB relaxation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

33-41

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.S. Kê, Experimental evidence on the viscous behavior of grain boundaries in metals, Phys. Rev. 71 (1947) 533-546.

DOI: 10.1103/physrev.71.533

Google Scholar

[2] T.S. Kê, Fifty-Year Study of Grain Boundary Relaxation, Metall. Mater. Trans. A30 (1999) 2267-2295.

Google Scholar

[3] A.S. Nowick and B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, (1972).

Google Scholar

[4] H. Gleiter and B. Chalmers, High Angle Grain Boundaries, Pergamon Press, Oxford, (1972).

Google Scholar

[5] Q. P. Kong, B. Cai, and G. Gottstein, The change of grain boundary internal friction peak during high temperature deformation at different modes, J. Mater. Sci. 36 (2001) 5429-5434.

Google Scholar

[6] W. Benoit, High temperature relaxation, Mater. Sci. Eng. A370 (2004) 12-20.

Google Scholar

[7] C. Zener, Elasticity and Anelasticity of Metals, The University of Chicago Press, Chicago, (1948).

Google Scholar

[8] L. X. Yuan and T. S. Kê, Grain boundary internal friction peaks measured by the forced vibration method, Phys. Stat. Sol. (a), 154 (1996) 573- 581.

DOI: 10.1002/pssa.2211540210

Google Scholar

[9] Y. Shi, P. Cui, Q. P. Kong, W. B. Jiang, and M. Winning, Internal friction peak in bicrystals with different misorientations, Phys. Rev. B 71, (2005) R060101.

DOI: 10.1103/physrevb.71.060101

Google Scholar

[10] W. B. Jiang, P. Cui, Q. P. Kong, Y. Shi, and M. Winning, Internal friction peak in pure Al bicrystals with <100> tilt boundaries, Phys. Rev. B 72 (2005) 174118.

DOI: 10.1103/physrevb.72.174118

Google Scholar

[11] Y. Shi, W. B. Jiang, Q. P. Kong, P. Cui, Q. F. Fang, and M. Winning, Basic mechanism of grain boundary internal friction revealed by a coupling model, Phys. Rev. B 73 (2006) 174101.

DOI: 10.1103/physrevb.73.174101

Google Scholar

[12] Q. P. Kong, W. B. Jiang , Y. Shi , P. Cui, Q. F. Fang, and M. Winning, Grain boundary internal friction in bicrystals with different misorientations, Mater Sci Eng. A 521-522 (2009) 128-133.

DOI: 10.1016/j.msea.2008.09.118

Google Scholar

[13] W. B. Jiang, Q. P. Kong, D.A. Molodov and G. Gottstein, Compensation effect in grain boundary internal friction, Acta Mater. 57 (2009) 3327-3331.

DOI: 10.1016/j.actamat.2009.03.040

Google Scholar

[14] W. B. Jiang, Q. P. Kong, P. Cui, F. Q. Fang, D.A. Molodov and G. Gottstein, Internal friction in Al bicrystals with <111> tilt and twist grain boundaries, Phil. Mag. 90 (2010) 753-764.

DOI: 10.1080/14786430903258192

Google Scholar

[15] W. B. Jiang, Q. P. Kong, P. Cui, Further evidence of grain boundary internal friction in bicrystals, Mater Sci Eng. A 527 (2010) 6028-6032.

DOI: 10.1016/j.msea.2010.05.091

Google Scholar

[16] J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley & Sons, Inc., New York, 1982, p.31.

Google Scholar

[17] A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press, Oxford, (1995).

Google Scholar

[18] J. C. Hamilton, D. J. Siegel, I. Daruka, and F. Leonard, Why do grain boundaries exhibit finite facet lengths, Phys. Rev. Lett., 90 (2003) 246102.

DOI: 10.1103/physrevlett.90.246102

Google Scholar

[19] R. Raj and M.F. Ashby, On grain boundary sliding and diffusional creep, Metall. Trans. 2 (1971) 1113-1127.

DOI: 10.1007/bf02664244

Google Scholar

[20] D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall. 14 (1966) 1479-1484.

DOI: 10.1016/0001-6160(66)90168-4

Google Scholar

[21] T. Watanabe, Grain boundary engineering: historical perspective and future prospects, J. Mater. Sci. 46 (2011) 4095-4115.

DOI: 10.1007/s10853-011-5393-z

Google Scholar

[22] K. L. Ngai, Relaxation and Diffusion in Complex Systems, Springer, New York, (2011).

Google Scholar

[23] K. L. Ngai, Y. N. Wang, and L. B. Magalas, Theoretical basis and general applicability of the coupling model to relaxations in coupled systems, J. Alloys Comps. 211/212 (1994) 327-332.

DOI: 10.1016/0925-8388(94)90513-4

Google Scholar

[24] L. B. Magalas, Mechanical spectroscopy-fundamentals, Solid State Phynom. 89 (2003) 1-22.

Google Scholar

[25] X. P. Wang and Q. F. Fang, Mechanical and dielectric relaxation studies on the mechanism of oxygen ion diffusion in La2Mo2O9, Phys. Rev. B 65 (2002) 064304.

Google Scholar

[26] G. Gottstein and L. S. Shvindlerman, The compensation effect in thermally activated interface processes, Interface Sci., 6 (1998) 265-276.

Google Scholar

[27] D. A. Molodov, U. Czubayko, G. Gottstein and L. S. Shvindlerman, On the effect of purity and orientation on grain boundary motion, Acta Mater. 46 (1998) 553-564.

DOI: 10.1016/s1359-6454(97)00277-2

Google Scholar

[28] T. Surholt, D. A. Molodov and Chr. Herzig, Orientation dependence of Ge diffusion along symmetrical.

DOI: 10.1016/s1359-6454(98)00237-7

Google Scholar

[111] tilt grain boundaries in Al, Acta Mater. 46 (1998) 5345-5355.

Google Scholar