Release of Tetrahydrofuran, Structural Phase Transitions and Dynamic Relaxation Processes in Ca (BH4)2

Article Preview

Abstract:

Various calcium borohydride samples were investigated by means of combined measurements of thermogravimetry and mass spectrometry, and anelastic spectroscopy. On heating, the release of 2-5% tetrahydrofuran (THF) is detected in all the samples at temperatures below ~480 K, even in those which were previously thermally treated, according to procedures known from the literature, in order to remove the solvent. Dehydrogenation takes place above 480 K. Above room temperature the temperature dependence of the Young modulus of Ca (BH4)2 clearly monitors the release of THF and two irreversible structural phase transitions: from the α to the α’ phase around 460 K and from the α’ to the β phase, nearly completely evolved around 590 K. Moreover, the coefficient of elastic energy dissipation presents two dynamic processes below room temperature; a peak around 120 K characterized by an activation energy of 0.20 eV and a pre-exponential factor typical of atom-cluster relaxations, that we attributed to the dynamics of THF molecules retained in the borohydride lattice, and a peak around 200 K, possibly due to the relaxation of H vacancies.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

24-32

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. H. Majzoub and E. Rönnebro, J. Phys. Chem. C 113 (2009) 3352-3358.

Google Scholar

[2] M. D. Riktor, M. H. Sørby, K. Chlopek, M. Fichtner, F. Butcher, A. Züttel and B. C. Hauback, J. Mater. Chem. 17 (2007) 4939-4942.

Google Scholar

[3] E. Rönnebro and E. H. Majzoub, J. Phys. Chem. B 111 (2007) 12045-12047.

Google Scholar

[4] J. -H. Kim, S. -A. Jin, J. -H. Shim and Y. W. Cho, Scripta Materialia 58 (2008) 481–483.

Google Scholar

[5] Y. Filinchuk, E. Rönnebro and D. Chandra, Acta Mater. 57 (2009) 732-738.

Google Scholar

[6] F. Buchter, Z. Łodziana, A. Remhof, O. Friedrichs, A. Borgschulte, Ph. Mauron, A. Züttel, D. Sheptyakov, G. Barkhordarian, R. Bormann, K. Chłopek, M. Fichtner, M. Sørby, M. Riktor, B. Hauback, and S. Orimo J. Phys. Chem. C 112 (2008) 8042-8048.

DOI: 10.1021/jp800435z

Google Scholar

[7] K. Miwa, M. Aoki, T. Noritake, N. Ohba, Y. Nakamori, S. Towata, A. Züttel, S. Orimo, Phys. Rev. B 74 (2006) 155122.

Google Scholar

[8] M. Aoki , K. Miwa, T. Noritake, N. Ohba , M. Matsumoto, H. -W. Li, Y. Nakamori, S. Towata, S. Orimo, Appl. Phys. A 92 (2008) 601-605.

DOI: 10.1007/s00339-008-4548-5

Google Scholar

[9] O. Palumbo, R. Cantelli, A. Paolone, C. M Jensen and M. Sulic, J. Phys. Chem. B 110 (2006) 9105-9111.

Google Scholar

[10] O. Palumbo, R. Cantelli, A. Paolone, C.M. Jensen and S. S. Srinivasan, J. Phys. Chem. B 109 (2005) 1168-1173.

Google Scholar

[11] O. Palumbo, A. Paolone, R. Cantelli, D. Chandra, Int. J. Hydr. Energy 33 (2008) 3107-3110.

Google Scholar

[12] A. Paolone, O. Palumbo, P. Rispoli, R. Cantelli, T. Autrey, J. Phys. Chem. C113 ( 2009) 5872.

Google Scholar

[13] A. Paolone, O. Palumbo, P. Rispoli, R. Cantelli, T. Autrey, A. Karkamkar, J. Phys. Chem. C 113 (2009), 10319-10321.

DOI: 10.1021/jp902341s

Google Scholar

[14] A. S. Nowick, B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972).

Google Scholar

[15] A. Paolone, R. Cantelli, G. Rousse C. Masquelier, J. Phys.: Condens. Matter 15 (2003) 457.

Google Scholar

[16] O. Palumbo, R. Cantelli, A. Paolone, C. M. Jensen, S.S. Srinivasan, J. All. and Cmpd. 404-406 (2005) 748-751.

Google Scholar

[17] G. Fantozzi, G. Gremaud, R. Schaller eds, Mechanical Spectroscopy Q-1 2001, Trans Tech Publications, (2001).

Google Scholar

[18] A. Paolone, R. Cantelli, R. Caciuffo, A. Arduini, Phys. Rev. B 65 (2002) 214304.

Google Scholar

[19] P. Rispoli, A. Paolone, O. Palumbo, R. Cantelli, D. Chandra, Mat. Sci. Eng. A 521-522 (2009) 155-158.

Google Scholar

[20] O. Palumbo, A. Paolone, P. Rispoli, A. D'Orazio, R. Cantelli, D. Chandra, Int. J. Mat. Res. 99 (2008) 487-490.

Google Scholar

[21] A. V. Skripov, A. V. Soloninin, Y. Filinchuk and D. Chernyshov, J. Phys. Chem. C112 (2008) 18701–18705.

Google Scholar

[22] A. Remhof, Z. Lodziana, F. Buchter, P. Martelli, F. Pendolino, O. Friedrichs, A. Zuttel, J.P. Embs, J. Phys. Chem. C 113 (2009) 16834-16837.

DOI: 10.1021/jp906174e

Google Scholar

[23] T. Tsang, T. C. Farrar, J. Chem Phys. 50 (1969) 3498-3502.

Google Scholar

[24] H. Hagemann et al., J. Alloys Comp. 363 (2004) 129-132.

Google Scholar

[25] D. Blanchard, M.D. Riktor, J. B. Maronsson, H. S. Jacobsen, J. Kehres, D. Svienbjornsson, E. Gil Bardajì, A. Léon, F. Juranyi, J. Wuttke, B. C. Hauback, M. Fichtner, and T. Vegge, J. Phys. Chem. 114 (2010) 20249-20257.

DOI: 10.1021/jp107281v

Google Scholar