The Investigation of Internal Friction on Antiferromagnetic Transition and Martensitic Transformation in Mn-Fe(Cu) Alloys

Article Preview

Abstract:

The internal friction and elastic modulus variations caused by the structural rearrangement fcc↔fct in Mn-Fe (Cu) antiferromagnetic alloys were studied in this paper. Antiferromagnetic transition exhibits weak first-order features due to the formation of microtwins by modulus softening mechanism. Antiferromagnetic transition also assists subsequent transformation to form twinned martensite. The small hysteresis between direct and reveres martensitic transformations indicates the thermoelastic feature. Both the martensitic and its reverse transformations also depend on the modulus softening mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

378-383

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Zhang, Typed-new multifunctional Mn-rich antiferromagnetic alloys, Curr. Opin. Solid State Mater. Sci., 9(2005), 326-330.

DOI: 10.1016/j.cossms.2006.02.013

Google Scholar

[2] F. X. Yin, Y. Ohsawa, A. Sato, K. Kawahara, Solid solution treatment improved damping behavior in as-cast and cold-rolled Mn-20Cu-5Ni-2Fe alloy, Z. Metallkd., 89(1998), 481-486.

Google Scholar

[3] Zhang Jihua, Peng Wenyi, Gu Suyi, Deng Huaming, Chen Shuchuan, Damping mechanism associated with coupling between antiferromagnetic transition and martensitic transformation, Mater. Sci. Eng., 442A(2006), 229-232.

DOI: 10.1016/j.msea.2006.05.165

Google Scholar

[4] G. Nosova, E. Vintaikin, Investigation of nature of two-way shape memory effect in Mn-based alloys, Scr. Mater., 40(1999), 347-351.

DOI: 10.1016/s1359-6462(98)00438-2

Google Scholar

[5] J. H. Zhang, W. Y. Peng, J. J. Zhang, T. Y. Hsu(Xu Zuyao), Shape memory effect of an antiferromagnetic Mn-9. 5at%Fe-5. 0at%Cu alloy, Mater. Sci. Eng., 481-482A(2008), 326-329.

DOI: 10.1016/j.msea.2006.12.222

Google Scholar

[6] J. H. Zhang, W. Y. Peng, S. P. Chen, T. Y. Hsu(Xu Zuyao), Magnetic shape memory effect in an antiferromagnetic g-Mn-Fe (Cu) alloy, Appl. Phys. Lett., 86(2005), 022506.

DOI: 10.1063/1.1850613

Google Scholar

[7] J. H. Zhang, W. Y. Peng, T. Y. Hsu(Xu Zuyao), The magnetic field induced strain without prestress and with stress in a polycrystalline Mn-Fe-Cu antiferromagnetic alloy, Appl. Phys. Lett., 93(2008), 122510.

DOI: 10.1063/1.2990643

Google Scholar

[8] J. H. Zhang, Y. H. Rong, T. Y. Hsu(Xu Zuyao), The coupling between first-order martensitic transformation and second-order antiferromagnetic transition in Mn-rich g Mn-Fe alloy, Phil. Mag., 90(2010), 159-168.

DOI: 10.1080/14786430903074748

Google Scholar

[9] K. Shimizu, Y. Okumura, H. Kubo, Crystallographic and morphological studies on the fcc to fct transformation in Mn-Cu alloy, Trans. of the Jpn. Inst. of Met., 23(1982), 53-59.

DOI: 10.2320/matertrans1960.23.53

Google Scholar

[10] J. A. Hedley, The mechanism of damping in manganese copper alloy, Met. Sci. J., 2(1968), 129-137.

Google Scholar

[11] G. Hausch, A. Schmolz, E. Török, H. Warlimont, Internal friction and elastic constant anomalies of antiferromagnetic Mn-Ni alloys, J. de Phys., C9(1983), 471-476.

DOI: 10.1051/jphyscol:1983968

Google Scholar

[12] G. Hausch, E. Török, Elastic constants and internal friction of antiferromagnetic g Mn-Ni alloys. Proc. of Inter. Conf. on Internal Friction and Ultrasonic Attenuation in Solid, Tokyo, 1977, pp.731-735.

DOI: 10.1051/jphyscol:1983968

Google Scholar

[13] N. Honda, Y. Tanji, Y. Nakagawa, Lattice distortion and elastic properties of antiferromagnetic g Mn-Ni alloys, J. of the Phys. Soc. of Jpn., 41(1976), 1931-(1937).

DOI: 10.1143/jpsj.41.1931

Google Scholar

[14] W. R. Patterson, The fcc to fct Gamma-manganese transformation in Mn-Ni alloys, Trans. of the AIME, 233(1965), 438-450.

Google Scholar

[15] Y. Endoh, Y. Ishikawa, Antiferromagnetism of γ iron manganese alloys, J. Phys. Soc. Jpn., 30(1971), 1614-1627.

DOI: 10.1143/jpsj.30.1614

Google Scholar

[16] K. Sugimoto, T. Mori, S. Shiode, Effect composition on the internal friction and Young`s modulus in g phase Mn-Cu alloys, Met. Sci. J., 7(1973), 103-108.

DOI: 10.1179/030634573790445604

Google Scholar

[17] K. Ito, M. Kobayashi, M. Tsukishima, High damping capability of Mn-base g–phase alloys, J. de Phys., C5(1981), 641-646.

DOI: 10.1051/jphyscol:1981598

Google Scholar