[1]
J. H. Zhang, Typed-new multifunctional Mn-rich antiferromagnetic alloys, Curr. Opin. Solid State Mater. Sci., 9(2005), 326-330.
DOI: 10.1016/j.cossms.2006.02.013
Google Scholar
[2]
F. X. Yin, Y. Ohsawa, A. Sato, K. Kawahara, Solid solution treatment improved damping behavior in as-cast and cold-rolled Mn-20Cu-5Ni-2Fe alloy, Z. Metallkd., 89(1998), 481-486.
Google Scholar
[3]
Zhang Jihua, Peng Wenyi, Gu Suyi, Deng Huaming, Chen Shuchuan, Damping mechanism associated with coupling between antiferromagnetic transition and martensitic transformation, Mater. Sci. Eng., 442A(2006), 229-232.
DOI: 10.1016/j.msea.2006.05.165
Google Scholar
[4]
G. Nosova, E. Vintaikin, Investigation of nature of two-way shape memory effect in Mn-based alloys, Scr. Mater., 40(1999), 347-351.
DOI: 10.1016/s1359-6462(98)00438-2
Google Scholar
[5]
J. H. Zhang, W. Y. Peng, J. J. Zhang, T. Y. Hsu(Xu Zuyao), Shape memory effect of an antiferromagnetic Mn-9. 5at%Fe-5. 0at%Cu alloy, Mater. Sci. Eng., 481-482A(2008), 326-329.
DOI: 10.1016/j.msea.2006.12.222
Google Scholar
[6]
J. H. Zhang, W. Y. Peng, S. P. Chen, T. Y. Hsu(Xu Zuyao), Magnetic shape memory effect in an antiferromagnetic g-Mn-Fe (Cu) alloy, Appl. Phys. Lett., 86(2005), 022506.
DOI: 10.1063/1.1850613
Google Scholar
[7]
J. H. Zhang, W. Y. Peng, T. Y. Hsu(Xu Zuyao), The magnetic field induced strain without prestress and with stress in a polycrystalline Mn-Fe-Cu antiferromagnetic alloy, Appl. Phys. Lett., 93(2008), 122510.
DOI: 10.1063/1.2990643
Google Scholar
[8]
J. H. Zhang, Y. H. Rong, T. Y. Hsu(Xu Zuyao), The coupling between first-order martensitic transformation and second-order antiferromagnetic transition in Mn-rich g Mn-Fe alloy, Phil. Mag., 90(2010), 159-168.
DOI: 10.1080/14786430903074748
Google Scholar
[9]
K. Shimizu, Y. Okumura, H. Kubo, Crystallographic and morphological studies on the fcc to fct transformation in Mn-Cu alloy, Trans. of the Jpn. Inst. of Met., 23(1982), 53-59.
DOI: 10.2320/matertrans1960.23.53
Google Scholar
[10]
J. A. Hedley, The mechanism of damping in manganese copper alloy, Met. Sci. J., 2(1968), 129-137.
Google Scholar
[11]
G. Hausch, A. Schmolz, E. Török, H. Warlimont, Internal friction and elastic constant anomalies of antiferromagnetic Mn-Ni alloys, J. de Phys., C9(1983), 471-476.
DOI: 10.1051/jphyscol:1983968
Google Scholar
[12]
G. Hausch, E. Török, Elastic constants and internal friction of antiferromagnetic g Mn-Ni alloys. Proc. of Inter. Conf. on Internal Friction and Ultrasonic Attenuation in Solid, Tokyo, 1977, pp.731-735.
DOI: 10.1051/jphyscol:1983968
Google Scholar
[13]
N. Honda, Y. Tanji, Y. Nakagawa, Lattice distortion and elastic properties of antiferromagnetic g Mn-Ni alloys, J. of the Phys. Soc. of Jpn., 41(1976), 1931-(1937).
DOI: 10.1143/jpsj.41.1931
Google Scholar
[14]
W. R. Patterson, The fcc to fct Gamma-manganese transformation in Mn-Ni alloys, Trans. of the AIME, 233(1965), 438-450.
Google Scholar
[15]
Y. Endoh, Y. Ishikawa, Antiferromagnetism of γ iron manganese alloys, J. Phys. Soc. Jpn., 30(1971), 1614-1627.
DOI: 10.1143/jpsj.30.1614
Google Scholar
[16]
K. Sugimoto, T. Mori, S. Shiode, Effect composition on the internal friction and Young`s modulus in g phase Mn-Cu alloys, Met. Sci. J., 7(1973), 103-108.
DOI: 10.1179/030634573790445604
Google Scholar
[17]
K. Ito, M. Kobayashi, M. Tsukishima, High damping capability of Mn-base g–phase alloys, J. de Phys., C5(1981), 641-646.
DOI: 10.1051/jphyscol:1981598
Google Scholar