[1]
E.M. Terentjev, Liquid-crystalline elastomers, J. Phys.: Condens. Mat. 11 (1999) R239-R257.
DOI: 10.1088/0953-8984/11/24/201
Google Scholar
[2]
E. Nishikawa, H. Finkelmann, One-dimensional long-range order of smectic-A elastomers with diverse crosslinking density, Macromol. Rapid Commun. 19 (1998) 181-183.
DOI: 10.1002/(sici)1521-3927(19980401)19:4<181::aid-marc181>3.0.co;2-w
Google Scholar
[3]
E. Nishikawa, H. Finkelmann, Smectic-A liquid single crystal elastomers - strain induced break-down of smectic layers, Macromol. Chem. Phys., 200 (1999) 312-322.
DOI: 10.1002/(sici)1521-3935(19990201)200:2<312::aid-macp312>3.0.co;2-y
Google Scholar
[4]
D.M. Lambreva, B.I. Ostrovskii, H. Finkelmann, W.H. de Jeu, Disorder by Random Crosslinking in Smectic Elastomers, Phys. Rev. Lett. 93 (2004) 185702-185705.
DOI: 10.1103/physrevlett.93.185702
Google Scholar
[5]
E.P. Obraztsov, A.S. Muresan, B.I. Ostrovskii, W.H. de Jeu, Road to disorder in smectic elastomers, Phys. Rev. E 77 (2008) 021706-1-12.
DOI: 10.1103/physreve.77.021706
Google Scholar
[6]
P.G. de Gennes, On a relation between percolation theory and the elasticity of gels, J. Phys. (Paris) 37 (1976) L1-L2.
Google Scholar
[7]
L.T. Witkowski, E.M. Terentjev, Quenched random disorder and x-ray scattering in smectic elastomers, Phys. Rev. E., 80 (2009) 051701-1-8.
DOI: 10.1103/physreve.80.051701
Google Scholar
[8]
S. Feng and P.N. Sen, Percolation on Elastic Networks: New Exponent and Threshold, Phys. Rev. Lett. 52 (1984) 216-219.
DOI: 10.1103/physrevlett.52.216
Google Scholar
[9]
D. Long, P. Sotta, Numerical Simulation for the Mesoscale Deformation of Disordered Reinforced Elastomers, Modeling of Soft Matter. The IMA Volumes in Mathematics and its Applications 141 (2005) 205-233.
DOI: 10.1007/0-387-32153-5_9
Google Scholar
[10]
C. Heussinger and E. Frey, Floppy Modes and Nonaffine Deformations in Random Fiber Networks, Phys. Rev. L. 97 (2006) 105501-1-4.
DOI: 10.1103/physrevlett.97.105501
Google Scholar
[11]
C. Heussinger, Cooperative crosslink (un)binding in slowly driven bundles of semiflexible filaments, Phys. Rev. E. 83 (2011) 050902(R)-1-4.
DOI: 10.1103/physreve.83.050902
Google Scholar
[12]
L. Radzihovsky, J. Toner, Smectic liquid crystals in random environments, Phys. Rev. B. 60 (1999) 206-257.
DOI: 10.1103/physrevb.60.206
Google Scholar
[13]
C. Dasgupta, Duality maps on a lattice model od the smectic-A-nematic transition, Phys. Rev. A. 27 (1983) 1262-1265.
DOI: 10.1103/physreva.27.1262
Google Scholar
[14]
T.L. Ivanenko and M.I. Polikarpov, Symmetries of Abelian Lattice Theories with Chern-Simon Interactions, Preprint ITEP-49 (Moscow, 1991).
Google Scholar
[15]
J. Villain and J.F. Fernandez, Harmonic System in a Random Field, Z. Phys. B. 54 (1984) 139-150.
Google Scholar
[16]
D. Nelson and J. Toner, Bond-orientational order, dislocation loops, and melting of solids and smectic-A liquid crystals, Phys. Rev. B. 24 (1981) 363-387.
DOI: 10.1103/physrevb.24.363
Google Scholar
[17]
A.M. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers, Chur, Switzerald (1987).
Google Scholar
[18]
M.I. Polikarpov, Fractals, Topological Dedects and Confinement in Lattice Gauge Theories, Uspekhi Fizicheskih Nauk 165 (1995) 627-644.
DOI: 10.3367/ufnr.0165.199506b.0627
Google Scholar
[19]
S.V. Fridrikh, E.M. Terentjev, Order-Disorder Transition in an External Field in Random Ferromagnets and Nematic Elastomers, Phys. Rev. Lett. 79 (1997) 4661-4664.
DOI: 10.1103/physrevlett.79.4661
Google Scholar
[20]
H.M. Brodowsky, E.M. Terentjev, F. Kremer, R. Zentel, Induced roughness in thin films of smectic-C* elastomers, Europhys. Lett. 57 (2002) 53-59.
DOI: 10.1209/epl/i2002-00540-7
Google Scholar
[21]
T. Koma, Algebraic Topology of Spin Glasses, preprint ArXiv: 0805. 1308v2.
Google Scholar
[22]
A. Bovier and J. Fröhlich, A heuristic theory of the spin glass phase, J. Stat. Phys. 44 (1986) 347-391.
DOI: 10.1007/bf01011303
Google Scholar
[23]
H.A. Fertig, Deconfinement in the Two-Dimensional XY Model, Phys. Rev. Lett. 89 (2002) 035703-1-4.
Google Scholar
[24]
S.E. Korshunov, Phase transitions in continuously degenerate two-dimensional systems, Uspekhi Fizicheskikh Nauk 176 (2006) 233-274.
Google Scholar
[25]
C. Dasgupta, B.I. Halperin, Phase Transition in a Lattice Model of Superconductivity, Phys. Rev. Lett. 27 (1981) 1556-1560.
DOI: 10.1103/physrevlett.47.1556
Google Scholar
[26]
D. Stauffer, Monte Carlo Study of Density Profile, Radius and Perimeter for Percolation Clusters and Lattice Animals, Phys. Rev. Lett. 41 (1978) 1333-1337.
DOI: 10.1103/physrevlett.41.1333
Google Scholar
[27]
C.B. Lang, P. Petreczky, U(1) Gauge Theory with Villain Action on Spherical Lattices, Phys. Lett. B 387 (1996) 558-562.
DOI: 10.1016/0370-2693(96)01081-7
Google Scholar
[28]
J. -C. Walter, C. Chatelain, Numerical Investigation of the Aging of the Fully-Frustrated XY model, J. Stat. Mech. 10 (2009) P10017-1-17.
DOI: 10.1088/1742-5468/2009/10/p10017
Google Scholar