Mechanical Response of Bulk Metallic Glasses: Investigation by Mechanical Spectroscopy and Compression Tests - Elastic, Viscoelastic and Viscoplastic Components

Article Preview

Abstract:

The present paper addresses the mechanical behaviour of several bulk metallic glasses (BMG). Both small and large deformations are investigated, using mechanical spectroscopy and compression tests, respectively. In the case of a given BMG, the influence of temperature and strain rate (or frequency) on the mechanical response exhibits an attractive similarity when either small or large deformations are applied. Equivalence between temperature and time is clearly evidenced. The same behaviour is observed in many BMG, whatever their chemical composition, and therefore whatever their glass transition temperature. This behaviour is also very similar to that reported in other amorphous materials: polymers or oxide glasses. The same physical model enables a good description of this behaviour. It is based on atomic mobility and localized deformation in “soft” zones. nanocrystallization hinders strongly the atomic mobility and induces a drastic hardening at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

393-398

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue, T. Zhang, M. Matsumoto, Mater. Trans. JIM, 31 (1990) 177- 182.

Google Scholar

[2] A. Peker and W. L. Johnson, Appl. Phys. Letters, 63 (1993) 2342-2345.

Google Scholar

[3] Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto, Scripta Mater., 7 (1997) 431-436.

Google Scholar

[4] R. Busch, E. Bakke and W.L. Johnson, Acta Mater. 46 (1998) 4725-4732.

Google Scholar

[5] L.Q. Xing, J. Eckert, W. Löser, L. Schultz and D.M. Herlach, Phil. Mag. A 79 (1999) 1095- 1103.

Google Scholar

[6] A. Inoue, Mat. Sci. Eng. A 267 (1999) 171-183. 9.

Google Scholar

[7] J.M. Pelletier and B. Van de Moortele, J. Non Cryst. Solids, 325 (2003) 133-141.

Google Scholar

[8] C.A. Schuh, A.C. Lund, T.G. Nieh, Acta Mater. 52 (2004) 5879-5891.

Google Scholar

[9] J.M. Pelletier, J. Alloys Comp. 393 (2005) 223- 230.

Google Scholar

[10] K. Schröter, G. Wilde, R. Willnecker, M. Weiss, K. Samwer, E. Donth, Euro Phys. J. B5 (1998), 1-5.

Google Scholar

[11] D. Perera and A.P. Tsai, J. Phys. D : Appl. Phys. 32 (1999) 2933-2941.

Google Scholar

[12] D. Perera and A.P. Tsai, J. Phys. : Cond. Matter, 11 (1999) 3029-3042.

Google Scholar

[13] S. Etienne, J.Y. Cavaillé, J. Perez, R. Point and M. Salvia, Rev. Sci. Instr. 53 (1982) 1261 - 1268.

Google Scholar

[14] J.M. Pelletier, B. Van de Moortèle, I. Lu, Mat. Sci. Eng., A336 (2002) 190-195.

Google Scholar

[15] G. Wang, D.K. Wang, T. Fu, J.J. Blandin, J.M. Pelletier and Y.D. Dong, J. Non Cryst. Solids, 495 (2010) 50-54.

Google Scholar

[16] C. Gauthier, J.M. Pelletier, Q. Wang, J.J. Blandin, J. Non Cryst. Solids, 345 (2004) 469-472.

Google Scholar

[17] J.Y. Cavaillé, J. Perez and J.P. Johari, J. Non Cryst. Solids, 131-133 (1991) 935- 944.

Google Scholar

[18] J. Perez, Polym. Sci B 40 (1998), 17-29.

Google Scholar

[19] J. Perez, Physics and Mechanics of Amorphous Polymers, A.A. Belkema Publishers, Rotterdam, The Netherlands (1998).

Google Scholar