3D Attitude Estimation in Indoor Environments with a Complementary Filter for the Special Orthogonal Group SO(3)

Article Preview

Abstract:

This paper presents a practical implementation of a complementary filter for 3D attitude estimation in an indoor setting. The structure of the filter is chosen basing on design principles described in [. It demonstrates the basic foundations of a complementary filter and proposes a simple and concise implementation for sensor fusion of data collected using an IMU and a Hokuyo URG 04LX laser scanner. Experimental results are shown for a handheld test bed satisfactory quality of estimation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 198)

Pages:

153-158

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Mahony et al.: Nonlinear complementary filters on the special orthogonal group. Automatic Control, IEEE Transactions on, 53(5): 1203-1218, June (2008).

DOI: 10.1109/tac.2008.923738

Google Scholar

[2] R.W. Beard: Quadrotor dynamics and control. (2006).

Google Scholar

[3] N.G. Johnson: Vision-assisted control of a hovering air vehicle in an indoor setting. Master's thesis, Brigham Young University, August (2008).

Google Scholar

[4] E. Foxlin et al.,: Miniature 6-DOF inertial system for tracking HMDs. In Proc. SPIE Helmet and Head-Mounted Displays III, pages 214-228, (1998).

DOI: 10.1117/12.317434

Google Scholar

[5] J. Balaram: Kinematic observers for articulated rovers. In Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on, volume 3, pages 2597-2604 vol. 3, (2000).

DOI: 10.1109/robot.2000.846419

Google Scholar

[6] R. Klang, A.J. Baerveldt: A low-cost and low-weight attitude estimation system for an autonomous helicopter. Intelligent Engineering Systems, (1997).

DOI: 10.1109/ines.1997.632450

Google Scholar

[7] B. Vik, T.I. Fossen: A nonlinear observer for GPS and INS integration. In Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, Vol. 3, (2001).

DOI: 10.1109/cdc.2001.980726

Google Scholar

[8] G. Baldwin et al.,: Complementary Filter Design on the Special Euclidean Group SE(3). (2007).

Google Scholar

[9] Ch. Kessler et al.: Vision-based attitude estimation for indoor navigation using vanishing points and lines. In Position Location and Navigation Symposium (PLANS), 2010 IEEE/ION.

DOI: 10.1109/plans.2010.5507247

Google Scholar

[10] G. Welch, G. Bishop: An introduction to the kalman filter. Chapel Hill, NC, USA, (1995).

Google Scholar

[11] K. Sibilski: Modelowanie i symulacja dynamiki ruchu obiektow latajacych. Oficyna Wydawnicza MH, (2004).

Google Scholar

[12] B.L. Stevens, F.L. Lewis: Aircraft Control and Simulation. Wiley-Interscience, October (2003).

Google Scholar

[13] A. Tayebi, S. McGilvray: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transactions on control systems technology, 14(3), (2006).

DOI: 10.1109/tcst.2006.872519

Google Scholar

[14] Sz. Rusinkiewicz, M. Levoy: Efficient variants of the ICP algorithm. In Third International Conference on 3D Digital Imaging and Modeling (3DIM), (2001).

DOI: 10.1109/im.2001.924423

Google Scholar

[15] A. Censi: An ICP variant using a point-to-line metric. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, (2008).

DOI: 10.1109/robot.2008.4543181

Google Scholar

[16] G. Grisetti, C. Stachniss, W. Burgard: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Transactions on Robotics, (2007).

DOI: 10.1109/tro.2006.889486

Google Scholar

[17] Morgan Quigley et al.: ROS: an open-source robot operating system. In ICRA Workshop on Open Source Software, (2009).

Google Scholar