Active Impedance Matching

Article Preview

Abstract:

Electrically small antenna suffer from the high Q impedance such as narrow bandwidth and poor gain. To improve them, passive impedance matching is often used but it is restricted to a Bode-Fano limit. To skip it, active matching incorporating non-Foster circuits can provide a good solution. Using non-Foster theory, in this paper an active reactance circuit (ARC) design is proposed for application to electrically small antenna prototypes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 210)

Pages:

3-8

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. R. Best and D. L. Hanna: A performance comparison of fundamental small-antenna designs, IEEE Antennas Propagation Magazine (2010), vol. 52, no. 1, p.47–70.

DOI: 10.1109/map.2010.5466398

Google Scholar

[2] R. C. Hansen in: Electrically Small, Superdirective, and Superconducting Antennas. NJ: Wiley, (2006).

DOI: 10.1002/0470041048.ch2

Google Scholar

[3] H. R. Stuart: Electrically small antenna elements using negative permittivity resonators, IEEE Trans. Antennas Propag., vol. 54, no. 6, p.1644–1653, (2006).

DOI: 10.1109/tap.2006.875498

Google Scholar

[4] H. Choo., R. L Rogers., H. Ling: Design of Electrically Small Wire Antennas Using a Pareto Genetic Algorithm, IEEE Trans. Antennas Propag., vol. 53, No. 3, (2005).

DOI: 10.1109/tap.2004.842404

Google Scholar

[5] Yifeng Fan, Rajab Khalid Z., Munoz M, Yang Hao, Electrically small half-loop antenna design with Non-Foster matching networks, 6th European Conference on Antennas and Propagation(EUCAP), 2011, pp.126-129.

DOI: 10.1109/eucap.2012.6206602

Google Scholar

[6] Haiyu Huang, Karl Nieman: Electrically small folded ellipsoidal helix antenna for medical implant applications, Antennas and Propagation, 2011 IEEE International Symposium on, pp.769-771.

DOI: 10.1109/aps.2011.5996826

Google Scholar

[7] H. A. Wheeler: Small antennas, IEEE Trans. Antennas Propagat., vol AP-23 (1975), p.462.

DOI: 10.1109/tap.1975.1141115

Google Scholar

[8] L. J. Chu: Physical limitations of omni-directional antennas, Journal of Applied Physics(1948), vol. 10, p.1163–1175.

DOI: 10.1063/1.1715038

Google Scholar

[9] H. W. Bode: Network Analysis and Feedback Amplifier Design, New York: Van Nostrand Company, (1945).

Google Scholar

[10] R. M. Fano: Theoretical limitations on the broad-band matching of arbitrary impedances, J. Franklin Inst., vol. 249, pp.139-154, (1950).

DOI: 10.1016/s0016-0032(50)91101-x

Google Scholar

[11] S.E. Sussman-Fort, Non-Foster Impedance Matching of Electrically-Small Antennas, IEEE Transactions On Antennas And Propagation (2009), Vol. 57, No. 8.

DOI: 10.1109/tap.2009.2024494

Google Scholar

[12] J.T. Aberle and R. Loepsinger-Romak: Antennas with Non-Foster Matching Networks, C.A. Balanis: Synthesis Lecture on Antennas Series, edited by Morgan & Claypool(2006).

DOI: 10.1007/978-3-031-01532-8_1

Google Scholar

[13] A. Kaya, E. Y. Yuksel,: Investigation of a compensated rectangular microstrip antenna with negative capacitor and negative inductor for bandwidth enhancement, IEEE Transactions on Antennas and Propagation (2008), vol. 55, pp.1275-1282, (2008).

DOI: 10.1109/tap.2007.895618

Google Scholar

[14] K. Jagodzińska, S. Dziura, A. Witenberg, M. Walkowiak: ESAs design and measurement, Polish Journal of Environmental Studies, vol. 20, No. 5a (2011), pp.66-69.

Google Scholar