Open Cell Al-Si Foams by a Sintering and Dissolution Process

Article Preview

Abstract:

Open cell foams from AlSi12 alloy were successfully fabricated by the Sintering and Dissolution Process, using NaCl as space holder (60 %). The size of the aluminum alloy powder is less than 45 μm, while the space holder powder size is 315-500 μm, 630-800 μm and 800-1250 μm respectively. The appropriate quantities of alloy powder and salt were mixed and cold pressed at 250 MPa. The sintering process was done at 500 °C and 545 °C, in vacuum (10-5 torr) for 10, 20 and 30 minutes respectively. The space holder was eliminated by holding the sintered samples in running hot water (70 °C). After the salt was dissolved, the samples were dried and the mass loss was analyzed. Keywords: Aluminum foam, Powder metallurgy, Sintering and dissolution process

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 216)

Pages:

249-254

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.F. Ashby, A G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, (2000).

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[2] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46 (2001) 559-632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[3] K. Grilec, G. Maric, S. Jakovljevic, A Study On Energy Absorption of Aluminium Foam, BHM Berg - und Hüttenmännische Monatshefte 155 (2010) 231-234.

DOI: 10.1007/s00501-010-0567-6

Google Scholar

[4] K. Kitazono, S. Nishizawa, E. Sato, T. Motegi, Effect of ARB Cycle Number on Cell Morphology of Closed-Cell Al-Si Alloy Foam, Mater. T. JIM 45 (2004) 2389-2394.

DOI: 10.2320/matertrans.45.2389

Google Scholar

[5] C.C. Yang, H. Nakae, Foam Structure Effect on the Compression Behavior of Foamed Aluminum Alloy, ISIJ Int. 40 (2000) 1283-1286.

DOI: 10.2355/isijinternational.40.1283

Google Scholar

[6] Y. Zhao, F. Han, T. Fung, Optimisation of compaction and liquid-state sintering in sintering and dissolution process for manufacturing Al foams, Mater. Sci. Eng. A 364 (2004) 117-125.

DOI: 10.1016/j.msea.2003.08.004

Google Scholar

[7] B. Matijasevic, J. Banhart, Improvement of aluminium foam technology by tailoring of blowing agent, Scripta Mater. 54 (2006) 503-508.

DOI: 10.1016/j.scriptamat.2005.10.045

Google Scholar

[8] N.E. Abdullatef, A.M. Jaber, Preparation of Al-12Si Foam Using Liquid Technique, Eng. Techn. J. 27 (2000) 2479-2493.

Google Scholar

[9] D.P. Papadopoulos, H. Omar, F. Stergioudi, S.A. Tsipas, H. Lefakis, N. Michailidis, A novel method for producing Al-foams and evaluation of their compression behavior, J. Porous Mater. 17 (2010) 773-777.

DOI: 10.1007/s10934-009-9349-5

Google Scholar

[10] I. Duarte, J. Banhart, Influence of process parameters on the expansion behaviour of aluminium foams, Metal Matrix Composites and Metallic Foams, EUROMAT 99, Wiley-VCH, 5 (2000), 14-21.

DOI: 10.1002/3527606165.ch2

Google Scholar

[11] I. Paulin, B. Sustarsic, V. Kevorkijan, S. D. Skapin, M. Jenko, Synthesis of aluminium foams by the powder-metallurgy process : compacting of precursors, Mater. Techno. 45 (2011) 13-19.

Google Scholar

[12] C. Kadar, F. Chmellk, M. Cieslar, J. Lendvaia, Acoustic emission of salt-replicated foams during compression Scripta Mater. 59 (2008) 987-990.

DOI: 10.1016/j.scriptamat.2008.07.003

Google Scholar

[13] C. San Marchi, J.F. Despois, A. Mortensen, Uniaxial deformation of open-cell aluminum foam: the role of internal damage, Acta Mater. 52 (2004) 2895-2902.

DOI: 10.1016/j.actamat.2004.02.035

Google Scholar

[14] N. Michailidis, F. Stergioudi, Establishment of process parameters for producing Al-foam by dissolution and powder sintering method, Mater. Design 32 (2011) 1559-1564.

DOI: 10.1016/j.matdes.2010.09.029

Google Scholar

[15] S. Ozan, S. Bilhan, Effect of fabrication parameters on the pore concentration of the aluminum metal foam, manufactured by powder metallurgy process, Int. J. Adv. Manuf. Technol. 39 (2008) 257-260.

DOI: 10.1007/s00170-007-1207-5

Google Scholar

[16] Z. Hussain, N.S.A. Suffin, Microstructure and Mechanical Behaviour of Aluminium Foam Produced by Sintering Dissolution Process Using NaCl Space Holder, J. Eng. Sci. 7 (2011) 37–49.

Google Scholar

[17] R. Surace, L.A.C. De Filippis, A.D. Ludovico, G. Boghetich, Influence of processing parameters on aluminium foam produced by space holder technique, Mater. Design 30 (2009) 1878-1885.

DOI: 10.1016/j.matdes.2008.09.027

Google Scholar

[18] B. Jiang, N.Q. Zhao, C.S. Shi, X.W. Du, J. J Li, H.C. Man, A novel method for making open cell aluminum foams by powder sintering process, Mater. Lett. 59 (2005) 3333-3336.

DOI: 10.1016/j.matlet.2005.05.068

Google Scholar

[19] T. Koizumi, K. Kido, K. Kita, K. Mikado, S. Gnyloskurenko, T. Nakamura, Foaming Agents for Powder Metallurgy Production of Aluminum Foam, , Mater. T. JIM 52 (2011) 728-733.

DOI: 10.2320/matertrans.m2010401

Google Scholar

[20] Hong-Wei Song, Qi-Jian He, Ji-Jia Xie, A. Tobota, Fracture mechanisms and size effects of brittle metallic foams: In situ compression tests inside SEM, Compos. Sci. Technol. 68 (2008) 2441-2450.

DOI: 10.1016/j.compscitech.2008.04.023

Google Scholar

[21] Y. Zhao, D.X. Sun, A novel sintering-dissolution process for manufacturing Al foams, Scripta Mater. 44 (2001) 105-110.

DOI: 10.1016/s1359-6462(00)00548-0

Google Scholar