Luminescence of II-VI Semiconductor Nanoparticles

Article Preview

Abstract:

Nanoparticle or an ultrafine particle is a small solid whose physical dimension lies between 1 to 100 nanometers. Nanotechnology is the coming revolution in molecular engineering, and therefore, it is curiosity-driven and promising area of technology. The field of nanoscience and nanotechnology is interdisciplinary in nature and being studied by physicists, chemists, material scientists, biologists, engineers, computer scientists, etc. Research in the field of nanoparticles has been triggered by the recent availability of revolutionary instruments and approaches that allow the investigation of material properties with a resolution close to the atomic level. Strongly connected to such technological advances are the pioneering studies that have revealed new physical properties of matter at a level intermediate between atomic/molecular and bulk. Quantum confinement effect modifies the electronic structure of nanoparticles when their sizes become comparable to that of their Bohr excitonic radius. When the particle radius falls below the excitonic Bohr radius, the band gap energy is widened, leading to a blue shift in the band gap emission spectra, etc. On the other hand, the surface states play a more important role in the nanoparticles, due to their large surface-to-volume ratio with a decrease in particle size (surface effects). From the last few years, nanoparticles have been a common material for the development of new cutting-edge applications in communications, energy storage, sensing, data storage, optics, transmission, environmental protection, cosmetics, biology, and medicine due to their important optical, electrical, and magnetic properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 222)

Pages:

1-65

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Schmid (Ed. ), Nanoparticles: From Theory to Application, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2004).

DOI: 10.1007/s00396-004-1234-9

Google Scholar

[2] D. Bera, L. Qian, P. H. Holloway, Phosphor Quantum Dots, in Luminescent Materials and Applications, Edited by A. Kitai, John Wiley & Sons, Ltd, Hoboken, NJ, USA, (2008).

DOI: 10.1002/9780470985687.ch2

Google Scholar

[3] C. R. Ronda and T. Ju¨stel, in, Quantum Dots and Nanophosphors, in Luminescence: From Theory to Applications, Edited by C.R. Ronda, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2008).

Google Scholar

[4] H. Chander, a review on synthesis of nanophosphors-future luminescent materials, Proc. of ASID 2006, 8-12 Oct, New Delhi, India, 11-15.

Google Scholar

[5] H. Chander, Development of nanophosphors-A review, Materials Science and Engineering R 49 (2005) 113–155.

Google Scholar

[6] X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wua, Y. Bando, D. Golberg, ZnS nanostructures: From synthesis to applications, Progress in Materials Science 56 (2011) 175–287.

DOI: 10.1016/j.pmatsci.2010.10.001

Google Scholar

[7] S.N. Sahu, K.K. Nanda, Nanostructure semiconductors: Physics and applications, PINSA 67 A (2001) 103-130.

Google Scholar

[8] I. A. Rahman, V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites- A Review 2012 (2012) 1-15.

DOI: 10.1155/2012/132424

Google Scholar

[9] D.R. Jung, J. Kim, C. Nahm, H. Choi, S. Nam, B. Park, Review Paper: Semiconductor Nanoparticles with Surface Passivation and Surface Plasmon, Electronic Materials Letters 7 (2011) 185-194.

DOI: 10.1007/s13391-011-0902-4

Google Scholar

[10] P. Borse, N. Deshmukh, S.K. Kulkarni, Semiconductor Nanoparticles, Physics Education 14 (1998) 333-341.

Google Scholar

[11] M. C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chemical Review 104 (2004) 293 – 346.

DOI: 10.1021/cr030698+

Google Scholar

[12] British-Museum, http: /www. britishmuseum. org/explore/highlights/highlight_objects/pe_mla/t/ the_lycurgus_cup. aspx.

Google Scholar

[13] G. Padeletti, P. Fermo, How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period, Applied Physics A 76 (2003) 515 - 525.

DOI: 10.1007/s00339-002-1935-1

Google Scholar

[14] M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philos. Trans. Roy. Soc. 147 (1857) 145 - 181.

DOI: 10.1098/rstl.1857.0011

Google Scholar

[15] Whipple-Museum-of-the-History-of-Science, http: /www. hps. cam. ac. uk/whipple/explore/microscopes/faradaysslide.

Google Scholar

[16] J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc. 11 (1951) 55-75.

DOI: 10.1039/df9511100055

Google Scholar

[17] A. I. Ekimov, A. A. Onushchenko, Quantum Size Effect in 3-Dimensional Microscopic Semiconductor Crystals, JETP Lett. 34 (1981) 345–349.

Google Scholar

[18] A. L. Efros, A. L. Efros, Interband Absorption of Light in a Semiconductor Sphere, Sov. Phys. Semicond. -USSR16 (7) (1982) 772–775.

Google Scholar

[19] A. I. Ekimov, A.A. Onushchenko, Size quantization of the electron energy spectrum in a microscopic semiconductor crystal, JETP Lett. 40 (1984) 1136-1139.

Google Scholar

[20] L.E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80 (1984) 4403-4409.

DOI: 10.1063/1.447218

Google Scholar

[21] R. N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Optical properties of manganese-doped nanocrystals of ZnS, Phys. Rev. Lett. 72 (1994) 416-419.

DOI: 10.1103/physrevlett.72.416

Google Scholar

[22] A. A. Khosravi, M. Kundu, B. A. Kuruvilla, G. S. Shekhawat, R. P. Gupta, A. K. Sharma, P.D. Vyas, S. K. Kulkarrni, Manganese doped zinc sulphide nanoparticles by aqueous method, Appl. Phys. Lett., 67 (17) (1995) 2506-2508.

DOI: 10.1063/1.114440

Google Scholar

[23] A.A. Khosravi, M. Kundu, B.A. Kuruvilla, G.S. Shekhawat, R. P. Gupta, A.K. Sharma, P. D. Vyas, S. K. Kulkarrni, Green luminescence from copper doped zinc sulphide quantum particles, Appl. Phys. Lett. 67 (17) (1995) 2702-2704.

DOI: 10.1063/1.114298

Google Scholar

[24] I. Yu, T. Isobe, M. Senna, Optical properties and characteristics of ZnS nano-particles with homogeneous Mn distribution, J. Phys. Chem. Solids 57(4) (1996) 373-379.

DOI: 10.1016/0022-3697(95)00285-5

Google Scholar

[25] R. N. Bhargava, Doped nanocrystalline materials - Physics and applications, J. Lumin. 70 (1996) 85-94.

Google Scholar

[26] H.S. Zhou, I. Honma, J.W. Haus, H. Sasabe, H. Komiyama, Synthesis and optical properties of coated nanoparticle composites, J. Lumin. 70 (1996) 21-34.

DOI: 10.1016/0022-2313(96)00041-5

Google Scholar

[27] H. Yang, Z. Wang, L. Song, M. Zhao, Y. Chen, K. Dou, J. Yu, L. Wang, Study of optical properties of manganese doped ZnS nanocrystals, Mater. Chem. and Phys. 47 (1997) 249-251.

DOI: 10.1016/s0254-0584(97)80059-4

Google Scholar

[28] M. Kundu, A. A. Khosravi, K.K. Kulkarni, P. Singh, Synthesis and study of organically capped ultra small clusters of cadmium sulphide, J. Mater. Sci. 32 (1997) 245-258.

Google Scholar

[29] W. Vogel, J. Urban, M. Kundu, S. K. Kulkarni, Sphalerite-wurtzite intermediates in nanocrystalline CdS, Langmuir 13 (1997) 827-832.

DOI: 10.1021/la960426k

Google Scholar

[30] M. Senna, T. Igarashi, M. Konishi, T. Isobe, Nanocrystalline ZnS: Mn Phosphor from Solutions Containing Carboxylic Acids, Fourth Intl. Display Workshop, Nogoya, Japan, Nov. 19-21 (1997) 613-616.

Google Scholar

[31] S.J. Xu, S. J. Chua, B. Liu, L. M. Gan, C. H. Chew, G. Q. Xu, Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment, Appl. Phys. Letts. 73(4) (1998) 478-480.

DOI: 10.1063/1.121906

Google Scholar

[32] A.A. Bol, A. Meijerink, Long-lived Mn2+ emission in nanocrystalline ZnS: Mn2+, Phys. Rev. B 54 (24) (1998) R15997-R16000.

Google Scholar

[33] T. Kezuka, M. Konishi, T. Isobe, M. Senna, Preparation and Properties of Nanocrystalline ZnS: Mn-Polymer Composite Films, J. Lumin. 87-98 (2000) 418-420.

DOI: 10.1016/s0022-2313(99)00438-x

Google Scholar

[34] J. Nanda, D.D. Sarma, Photoemission spectroscopy of size selected zinc sulfide nanocrystallites, J. Appl. Phys. 90 (5) (2001) 2504-2510.

DOI: 10.1063/1.1389521

Google Scholar

[35] M. Konishi, T. Isobe, M. Senna, Enhancement of Photoluminescence of ZnS: Mn Nanocrys- Tals by Hybridizing with Polymerized Acrylic Acid, J. Lumin. 93 (2001) 1-8.

DOI: 10.1016/s0022-2313(01)00174-0

Google Scholar

[36] T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, M. Senna, Characterization of Mn2+ coordination states in ZnS nanocrystal by EPR spectroscopy and related photoluminescence properties, J Nanoparticle Research 3 (2001) 51-56.

DOI: 10.1023/a:1011445009443

Google Scholar

[37] S. K. Kulkarni, U. Winkler, N. Deshmukh, P.H. Borse, R. Fink, E. Umbach, Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles, Appl. Surf. Sci. 169-170 (2001) 438-446.

DOI: 10.1016/s0169-4332(00)00700-5

Google Scholar

[38] S.C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, D. P. Yu, Photoluminescence properties of  Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution, Appl. Phys. Lett. 80 (19) (2002) 3605-3607.

DOI: 10.1063/1.1478152

Google Scholar

[39] K. Manzoor, S. R. Vadera, N. Kumar, T.R.N. Kutty, Synthesis and photoluminescence properties of ZnS nanocrystals doped with copper, Mater. Chem. Phys. 82 (2003) 718-725.

DOI: 10.1016/s0254-0584(03)00366-3

Google Scholar

[40] C. B. Chory, D. Buchold, M. Schmitt, W. Kiefer, C. Heske, C. Kumpf, O. Fuchs, L. Weinhardt, A. Stahl, E. Umbach, M. Lentze, J. Geurts, G. Műller, Synthesis, structure and spectroscopic characterization of water-soluble CdS nanoparticles, Chem. Phys. Letts. 379 (2003).

DOI: 10.1016/j.cplett.2003.08.068

Google Scholar

[41] C. He, Y. Guan, L. Yao, W. Cai, X. Li, Z. Yao, Synthesis and photoluminescence of nano-Y2O3: Eu3+ phosphors, Mater. Res. Bull. 38 (2003) 973-979.

DOI: 10.1016/s0025-5408(03)00089-8

Google Scholar

[42] S. C. Zhang, X.G. Li, Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms, Colloids and Surfaces A: Physicochem. Eng. Aspects 226 (2003) 35-44.

DOI: 10.1016/s0927-7757(03)00383-2

Google Scholar

[43] R Sharma, Optical studies of CdS: Mn nanoparticles, Luminescence : The Journal of Biological and Chemical luminescence 27 (2012) 501-504.

Google Scholar

[44] K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Energy transfer from organic surface adsorbate-polyvinyl pyrrolidone molecules to luminescent centers in ZnS nanocrystals, Solid State Comm. 129 (2004) 469-475.

DOI: 10.1016/j.ssc.2003.11.012

Google Scholar

[45] C. H. Park, S.J. Park, B.U. Yu, H. S. Bae, C. H. Kim, C. H. Pyun, H. G. Yan, VUV excitation of Y3Al5O12: Tb phosphor prepared by a sol-gel process, J Mat. Sci. Letts. 19 (2000) 335-338.

Google Scholar

[46] N. Karar, H. Chander; S.M. Shivaprasad, Enhancement of luminescent properties of ZnS: Mn nanophosphors by controlled ZnO capping, Appl. Phys. Letts. 85 (2004) 5058-5060.

DOI: 10.1063/1.1815059

Google Scholar

[47] L.P. Wang, G.Y. Hong, A new preparation of zinc sulfide nanoparticles by solid-state method at low temperature, Mater. Res. Bull. 35 (2000) 695-701.

DOI: 10.1016/s0025-5408(00)00261-0

Google Scholar

[48] A. Konrad, U. Herr, R. Tidecks, F. Kummer, K. Samwer, Luminescence of bulk and nanocrystalline cubic yttria, J. Appl. Phys. 90 (7) (2001) 3516 - 3523.

DOI: 10.1063/1.1388022

Google Scholar

[49] Y. Ebenstein, T. Mokari, U. Banin, Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy, Appl. Phys. Lett. 80 (21) (2002) 4033-4035.

DOI: 10.1063/1.1482785

Google Scholar

[50] A.V. Dijken, J. Makkinje, A. Meijerink, The influence of particle size on the luminescence quantum efficiency of nanocrystallie ZnO particles, J. Lumin. 92 (2001) 323 - 328.

DOI: 10.1016/s0022-2313(00)00262-3

Google Scholar

[51] P. Yang, M. Lü, D. Xü, G. Zhou, ZnS nanocrystals co-activated by transition metals and rare-earthmetals-a new class of luminescent materials,J. Lumin. 93 (2001) 101-105.

DOI: 10.1016/s0022-2313(01)00186-7

Google Scholar

[52] J. Lee, S. Lee, S. Cho, S. Kim, T.Y. Park, Y.D. Choi, Role of growth parameters on structural and optical properties of ZnS nanocluster thin films grown by solution growth technique, Mater. Chem. and Phys. 77 (2002) 254-260.

DOI: 10.1016/s0254-0584(01)00563-6

Google Scholar

[53] S. Lee, D. Song, D. Kim, J. Lee, S. Kim, I.Y. Park, Y.D. Choi, Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS: Cu nanocrystals, Mater. Lett. 58 (2004) 342-346.

DOI: 10.1016/s0167-577x(03)00483-x

Google Scholar

[54] V. Stanic, T.H. Etsell, A.C. Pierre, R.J. Mikula, Sol gel processing of ZnS, Mater. Lett., 31 (1997) 35-38.

DOI: 10.1016/s0167-577x(96)00237-6

Google Scholar

[55] D. Haranath, N. Bhalla, H. Chander, Rashmi, M. Kar, R. Kishore, Controlled growth of ZnS: Mn nanophosphor in porous silica matrix, J. Appl. Phys. 96 (2004) 6700-6705.

DOI: 10.1063/1.1806552

Google Scholar

[56] S.J. Xu, S.J. Chua, B. Liu, L.M. Gan, C.H. Chew, G.Q. Xu, Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment, Appl. Phys. Letts. 73(4) (1998) 478-480.

DOI: 10.1063/1.121906

Google Scholar

[57] Z.P. Qiao, G. Xie, J. Tao, Z.Y. Nie, Y.Z. Lin, X.M. Chen, Coordination polymer route to wurtzite ZnS and CdS nanorods, J. Solid State Chem. 166 (2002) 49-52.

DOI: 10.1006/jssc.2002.9556

Google Scholar

[58] J. Xu, W. Ji, Characterization of ZnS Nanoparticles Prepared by New Route, J. Mater. Sci. Lett. 18 (1999) 115-117.

Google Scholar

[59] X. Pingbo, Z. Weiping, Y. Min, Z. Weiwei, L. Liren, X. Shangda, Photoluminescence Properties of Surface-Modified Nanocrystalline ZnS: Mn, J. Colloid and Surf. Sci. 229 (2000) 534-539.

DOI: 10.1006/jcis.2000.7009

Google Scholar

[60] L. Cao, J. Zhang, S. Ren, S. Huang, Luminescence enhancement of core shell ZnS: Mn/ZnS nanoparticles, Appl. Phys. Lett. 80 (23) (2002) 4300-4302.

DOI: 10.1063/1.1483113

Google Scholar

[61] H. Yang, P.H. Holloway, Enhanced photoluminescence from CdS: Mn/ZnS core/shell quantum dots, Appl. Phys. Lett. 82 (12) (2003) 1965-(1967).

DOI: 10.1063/1.1563305

Google Scholar

[62] H. Natter, R. Hempelmann, Tailor-made nanomaterials designed by electrochemical methods, Electrochimica Acta 49 (2003) 51-61.

DOI: 10.1016/j.electacta.2003.04.004

Google Scholar

[63] W. Chen, R. Sammynaiken, Y. Huang, J. O. Malm, R. Wallenberg, J. O. Bovin, V. Zwiller, N. A. Kotov, Crystal field, phonon coupling and emission shift of Mn in ZnS: Mn nanoparticles, J. Appl. Phys. 89 (2) (2001) 1120-1129.

DOI: 10.1063/1.1332795

Google Scholar

[64] P. Nandakumar, C. Vijayan, Y.V.G.S. Murti, Optical absorption and photoluminescence studies on CdS quantum dots in Nafion, J. Appl. Phys. 91 (3) (2002) 1509-1514.

DOI: 10.1063/1.1425077

Google Scholar

[65] C. N. Xu, T. Watanabe, M. Akiyama, X.G. Zheng, Artificial skin to sense mechanical stress by visible light emission, Appl. Phys. Lett. 74 (1999)1236–1238.

DOI: 10.1063/1.123510

Google Scholar

[66] N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, P. French, G. Dearden, K.G. Watkins, II–VI semiconductor nanoparticles synthesized by laser ablation, Appl. Phys. A 94 (2009) 641–647.

DOI: 10.1007/s00339-008-4854-y

Google Scholar

[67] F. A. La Porta, M. M. Ferrer, Y.V.B. de Santana, C. W. Raubach, V. M. Longo, J. R. Sambrano, E. Longo, J. Andrés, M.S. Li, J. A. Varela, Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method, J. Alloys Comps. 556 (2013).

DOI: 10.1016/j.jallcom.2012.12.081

Google Scholar

[68] Available from http: /www. eserc. stony brook. edu/Project Java/Bragg.

Google Scholar

[69] A. R. West, Solid State Chemistry and its Applications, Wiley, New York, (1974).

Google Scholar

[70] H. Jensen, J. H. Pedersen, J. E. Jorgensen, J. Skov Pedersen, K. D. Joensen, S.B. Iversen, E. G. Sogaard, Determination of size distributions in naosized powders by TEM, XRD and SAXS, J. Experiemental Nanoscience, l (2006) 355.

DOI: 10.1080/17458080600752482

Google Scholar

[71] K. Max, Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper, Zeitschrift fur Technische Physik 16 (1935) 467- 475.

Google Scholar

[72] M. Ardenne, Das Elektronen Rastermikroskop. Theoretische Grundlagen (in German), Zeitschrift fur Physik 108 (1938) 553-572.

DOI: 10.1007/bf01341584

Google Scholar

[73] M. Ardenne, Das Elektronen-Rastermikroskop. Praktische Ausführung, Zeitschrift fur Technische Physik 19 (1986) 407-416.

Google Scholar

[74] SEM user manual Leo 400 operational notes page 2-3.

Google Scholar

[75] J.M. Howe, H. Mori, Z.L. Wang, In situ high-resolution transmission electron microscopy in the study of nanomaterials and properties, MRS Bull 33(2) (2008) 115–121.

DOI: 10.1557/mrs2008.24

Google Scholar

[76] D. M. Livingston; the Master of Light: The University Press of Chicago, Chicago (1973).

Google Scholar

[77] J. W. Cooley and J. W. Tukey; An algorithm for the machine calculation of complex Fourier series, Math Comut. 19 (1965) 297-301.

DOI: 10.1090/s0025-5718-1965-0178586-1

Google Scholar

[78] L. Mertz, Astronomical infrared spectrometer, J. Astron. 70 (1965) 548-551.

Google Scholar

[79] P. R. Griffiths, R. Curbelo, C.T. Foskett, S. T. Dunn, Analytical Instrumentation (Inst. Society of America) 8 (1970) 11-14.

Google Scholar

[80] B. C. Smith, Fundamental of Fourier Transform Infrared Spectroscopy, CRC (1996) 4.

Google Scholar

[81] P. R. Griffiths, J. A. de Haseth, Fourier transform infrared spectrometry, edited by P. J. Elving and J. D. Winefordner, Wiley-Interscience, (1986), volume 83. Cited on pages 38, 40.

Google Scholar

[82] T. Nicolet, Introduction to Fourier Transform Infrared Spectrometry, (2001).

Google Scholar

[83] G. Kortum, Kolorimetrie; Photometric and Spectrometric, Springer Kap 15(1962) 4.

Google Scholar

[84] B.A. Weinstein, Raman spectroscopy under pressure in semiconductor nanoparticles, Phys Status Solidi B 244(1) (2007)368–379.

DOI: 10.1002/pssb.200672542

Google Scholar

[85] Jose E. Herrera and Nataphan Sakulchaicharoen, Microscopic and Spectroscopic Characterization of Nanoparticles, In: Drug Delivery, Nanoparticles formulation and Characterization, (Eds. ) Y. Pathak and D. Thassu, Informa Healthcare, pp.237-249, NY (2009).

DOI: 10.3109/9781420078053

Google Scholar

[86] A. Nakamura, T. Tokizaki, T. Kataoka, Quantum size effects and optical nonlinearity of confined excitons in semiconducting microcrystallites, J. Lumin. 53 (1992) 105-109.

DOI: 10.1016/0022-2313(92)90117-r

Google Scholar

[87] Y. Wang, N. Herron, Optical properties of cadmium sulfide and lead (II) sulfide clusters encapsulated in zeolites, J. Phys. Chem. 91 (1987) 257-260.

DOI: 10.1021/j100286a004

Google Scholar

[88] http: /en. wikipedia. org/wiki/Fluorescence.

Google Scholar

[89] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 115 (1993) 8706-8715.

DOI: 10.1021/ja00072a025

Google Scholar

[90] W. W. Yu, X. G. Peng, Formation of high-quality CdS and other II-VI semiconductor nancrystals in non-coordinating solvents: tunable reactivity of monomers, Angew. Chem. Res. Int. Edit. 41(2002) 2368-2371.

DOI: 10.1002/1521-3773(20020703)41:13<2368::aid-anie2368>3.0.co;2-g

Google Scholar

[91] N. Karar, F. Singh, B.R. Mehta, Structure and photoluminescence studies on ZnS: Mn nanoparticles, J. Appl. Phys. 95 (2004) 656-660.

Google Scholar

[92] R. Tamrakar, M. Ramrakhiani, B.P. Chandra, Effect of Capping Agent Concentration on Photophysical Properties of Zinc Sulfide Nanocrystals, The Open Nanoscience Journal 2 (2008) 12-16.

DOI: 10.2174/1874140100802010012

Google Scholar

[93] B. P. Chandra, Luminescence of semiconductor nanoparticles, Proceeding of National Seminar on Luminescence and its Applications (NSLA-2001) Jan 17-18 (2001) 11-19.

Google Scholar

[94] H. Yang, P.H. Holloway, Enhanced photoluminescence from CdS: Mn/ZnS core/shell quantum dots, Appl. Phys. Lett. 82 (12) (2002) 1665-1666.

DOI: 10.1063/1.1563305

Google Scholar

[95] G. A. Martínez-Castañón, J. P. Loyola-Rodríguez, J. F. Reyes-Macías, Synthesis and optical properties of functionalized CdS nanoparticles with different sizes, Superficies y Vacío 23(4) (2010) 1-4.

Google Scholar

[96] J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, C. J. Murphy, Luminescence Spectral Properties of CdS Nanoparticles, J. Phys. Chem. B 103 (1999) 7613-7620.

DOI: 10.1021/jp991469n

Google Scholar

[97] M. Morita, D. Rau, H. Fujii, Y. Minami, S. Murakami, M. Baba, M. Yoshita, H. Akiyama, Photoluminescence of CdS: Mn2+ and Eu3+ nanoparticles dispersed in zirconia sol-gel films, J. Lumin. 87-89 (2000) 478-481.

DOI: 10.1016/s0022-2313(99)00215-x

Google Scholar

[98] J. Hasanzadeh, S. F. Shayesteh, Luminescence of doped CdS nanocrystals: effect of doping and capping agent, Optica Applicata XLI (2011) 921-928.

Google Scholar

[99] N. Ramamurthy, M. R. Kumar, G. Murugadoss, Synthesis and study of optical properties of CdS nanoparticles using effective surfactants, Nanoscience and Nanotechnology: An International Journal 1 (3) (2011) 12-16.

Google Scholar

[100] M. V. Artemyev, L. I. Gurinovich, A. P. Stupak, S. V. Gaponenko, Luminescence of CdS Nanoparticles Doped with Mn, Phys. Stat. Sol. (b) 224 (2011) 191–194.

DOI: 10.1002/1521-3951(200103)224:1<191::aid-pssb191>3.0.co;2-w

Google Scholar

[101] A. F. G. Monte, N. O. Dantas, P. C. Morais, D. Rabelo, Synthesis and Characterisation of CdS Nanoparticles in Mesoporous Copolymer Template, Brazilian J. Phys. 36 (2006) 427-429.

DOI: 10.1590/s0103-97332006000300052

Google Scholar

[102] J. I. Kim, J. Kim, J. Lee, D. R. Jung, H. Kim, H. Choi, S. Lee, S. Byun, S. Kang, B. Park, Photoluminescence enhancement in CdS quantum dots by thermal annealing, Nanoscale Research Letters 7 (2012) 482-1-7.

DOI: 10.1186/1556-276x-7-482

Google Scholar

[103] M. Ramrakhiani, Luminescence of Cadmium Sulphide Nanoparticles and Nanocomposites, Int. J. Lumin. Appl. 3 (2013) 15 –22.

Google Scholar

[104] A. Nag, S. Sapra, S. S. Gupta, A. Prakash, A. Ghangrekar, N, Periasamy, D. D. Sarma, Luminescence in Mn-doped CdS nanocrystals, Bull. Mater. Sci. 31 (2008) 561–568.

DOI: 10.1007/s12034-008-0087-0

Google Scholar

[105] S. Jamali, E. Saievar-Iranizad, S. Farjami Shayesteh, Synthesis, optical and structural characterization of CdS nanoparticles, IJNN 3 (2007) 53-62.

Google Scholar

[106] E. Hao, H. Sun, Z. Zhou, J. Liu, B. Yang, J. Shen, Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles, Chem. Mater. 11 (1999) 3096-3102.

DOI: 10.1021/cm990153p

Google Scholar

[107] C. Burda, S. Link, M. Mohamed, M. El-Sayed, The Relaxation Pathways of CdSe Nanoparticles Monitored with Femtosecond Time-Resolution from the Visible to the IR: Assignment of the Transient Features by Carrier Quenching, J. Phys. Chem. B 105 (2001).

DOI: 10.1021/jp0124589

Google Scholar

[108] D. Neshevaa, H. Hofmeisterb, Z. Levia, Z. Aneva, Nanoparticle layers of CdSe buried in oxide and chalcogenide thin film matrices, Vacuum 65 (2002) 109–113.

DOI: 10.1016/s0042-207x(01)00414-6

Google Scholar

[109] I. Mekis, D. V. Talapin, A. Kornowski, M. Haase, H. Weller, One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and Greener, Chemical Approaches, J. Phys. Chem. B 107 (2003) 7454-7462.

DOI: 10.1021/jp0278364

Google Scholar

[110] K. V. Zaharchenko, E. A. Obraztcova, K. E. Mochalov, M. V. Artemyev, I. L. Martynov, D. V. Klinov, I. R. Nabiev, A. A. Chistyakov, V. A. Oleinikov, Laser-Induced Luminescence of CdSe/ZnS Nanoparticles in Solution and Condensed Phase, Laser Physics, 15 (2005).

DOI: 10.1117/12.740018

Google Scholar

[111] S. S. Ashtaputre, A. Deshpande, S. Marathe, M. E. Wankhede, J. Chimanpure, R. Pasricha, J. Urban, S. K. Haram, S. W. Gosavi, S. K. Kulkarni, Synthesis and analysis of ZnO and CdSe nanoparticles, Pramana 65 (2003) 615-620.

DOI: 10.1007/bf03010449

Google Scholar

[112] W. S. Ferreira, J. S. de Sousa, J. A. K. Freire, G. A. Farias, and V. N. Freire, Optical Properties of Ellipsoidal CdSe Quantum Dots, Brazilian J. Phys. 36 (2006) 438-439.

DOI: 10.1590/s0103-97332006000300055

Google Scholar

[113] P. Gupta and M. Ramrakhiani, Influence of the Particle Size on the Optical Properties of CdSe Nanoparticles, The Open Nanoscience Journal 3 (2009) 15-19.

DOI: 10.2174/1874140100903010015

Google Scholar

[114] S. Saha, Structural and optical properties of chemically grown cdse nanoparticles, J. Phys. Sci. 15 (2011) 251-254.

Google Scholar

[115] A. J. Akey, C. Lu, L. Wu, Y. Zhu, I. P. Herman, Anomalous photoluminescence Stokes shift in CdSe nanoparticle and carbon nanotube hybrids, Physical Review B 85 (2012) 045404-1-7.

DOI: 10.1103/physrevb.85.045404

Google Scholar

[116] Takakazu Nakabayashi, Ruriko Ohshima and Nobuhiro Ohta, Electric Field Effects on Photoluminescence of CdSe Nanoparticles in a PMMA Film, Crystals, 4 (2014) 152-167.

DOI: 10.3390/cryst4020152

Google Scholar

[117] A. G. Joly, W. Chen, D. E. McCready, J. O. Malm, J.O. Bovin, Upconversion luminescence of CdTe nanoparticles, Phys. Rev. B 71 (2005) 165301-9.

DOI: 10.1103/physrevb.71.165304

Google Scholar

[118] Y. P. Rakovich, S. A. Filonovich, M. J. Gomes, J. F. Donegan, D. V. Talapin, A. L. Rogach, and A. Eychmuller, Anti-stokes photolumi- nescence in II-VI colloidal nanocrystals, Phys. Status Solidi B 229 (2002) 449 – 452.

DOI: 10.1002/1521-3951(200201)229:1<449::aid-pssb449>3.0.co;2-4

Google Scholar

[119] Y. P. Rakovich, A. A. Gladyshchuk, K. I. Rusakov, S. A. Filonovich, M. J. Gomes, D. V. Talapin, A. L. Rogach, and A. Eychmuller, Anti‐Stokes Luminescence of Cadmium Telluride Nanocrystals, J. Appl. Spectrosc. 69 (2002) 444 -449.

DOI: 10.1023/a:1019767619766

Google Scholar

[120] X. Wang, W. Yu, J. Zhang, J. Aldana, X. Peng, and M. Xiao, Photoluminescence upconversion in colloidal CdTe quantum dots, Phys. Rev. B 68 (2003) 125318-1-6.

DOI: 10.1103/physrevb.68.125318

Google Scholar

[121] A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc Oxide—From Synthesis to Application: A Review, Materials 7 (2014) 2833-2881.

DOI: 10.3390/ma7042833

Google Scholar

[122] S. Tachikawa, A. Noguchi, T. Tsuge, M. Hara, O. Odawara, H. Wada, Optical Properties of ZnO Nanoparticles Capped with Polymers, Materials 4 (2011) 1132-1143.

DOI: 10.3390/ma4061132

Google Scholar

[123] T. Andelman, Y. Gong, M. Polking, M. Yin, I. Kuskovsky, G. Neumark, Stephen O'Brien, Morphological Control and Photoluminescence of Zinc Oxide Nanocrystals, J. Phys. Chem. B 109 (30) (2005) 14314–14318.

DOI: 10.1021/jp050540o

Google Scholar

[124] P. D. Sahare, Vipin Kumar, Optical and magnetic properties of Cu-Doped ZnO nanoparticles, International Journal of Innovative Technology and Exploring Engineering (IJITEE) 3 (2013) 15 -21.

Google Scholar

[125] N. S. Han, H. S. Shim, J. H. Seo, S.Y. Kim, S. M. Park, J. K. Song, Defect states of ZnO nanoparticles: Discrimination by time-resolved photoluminescence spectroscopy, J. Appl. Phys. 107 (2010) 084306-1-7.

DOI: 10.1063/1.3382915

Google Scholar

[126] A. Somwangthanaroj, A. Matsumura, S. Ando, Green-light emission of ZnO nanoparticles spontaneously precipitated in fluorinated polyimide films, Proc. of SPIE Vol. 6122 (2006) 61220E-1-8.

DOI: 10.1117/12.654752

Google Scholar

[127] T. K. Kundu, N. Karak, P. Barik, S. Saha, Optical Properties of Zno Nanoparticles Prepared by Chemical Method Using Poly (VinylAlcohol ) (PVA) as Capping Agent, International Journal of Soft Computing and Engineering (IJSCE), 1 (2011) 19-24.

Google Scholar

[128] R. Shahid, H. M.A. Soliman, M. Fathy, M. Muhammed, Novel low temperature route for large scale synthesis of ZnO quantum dots, International Journal of Sciences, 1 (2012) 153-161.

Google Scholar

[129] S. Sawyer, L. Qin, C. Shing, Zinc oxide nanoparticles for ultraviolet photodetection, Int. Journal of High Speed Electronics and Systems 20 (2011) 183–194.

DOI: 10.1142/s0129156411006519

Google Scholar

[130] G. Destriau, Electroluminescence and Related Topics, I.R.E., Paris, (1966).

Google Scholar

[131] E. Bringuier, Tentative anatomy of ZnS-type electroluminescence, J. Appl. Phys. 75 (1994) 291–312.

Google Scholar

[132] D. R. Frankle, Electroluminescence of ZnS single-crystal with cathode barrier. Phys. Rev. 111(1958) 1540–1549.

Google Scholar

[133] W.W. Piper, F.E. Williams, Electroluminescence of single-crystals of ZnS: Cu, Phys. Rev. 87 (1952) 151–152.

DOI: 10.1103/physrev.87.151

Google Scholar

[134] P. Pipinys, A. Proskura, A. Rimeika, Temperature dependence of electroluminescence in ZnS ceramics. Phys Status Sol (A) 72 (1982) 511–514.

DOI: 10.1002/pssa.2210720210

Google Scholar

[135] Y.I. Golovin, R.B. Morgunov, A.A. Baskakov, S.Z. Shmurak, Effect of a magnetic field on the electroluminescence intensity of single-crystal ZnS. Phys. Solid State 41 (1999) 1783–1785.

DOI: 10.1134/1.1131097

Google Scholar

[136] A.L. Rogach, N. Gaponik, J.M. Lupton, C. Bertoni, D.E. Gallardo, Dunn S, P. N. Li, M. Paderi, P. Repetto, S.G. Romanov , C. O'Dwyer, T. C. M. Sotomayor, A. Eychmüller. Light-emitting diodes with semiconductor nanocrystals. Angew. Chem. Int. Ed. 47 (2008).

DOI: 10.1002/anie.200705109

Google Scholar

[137] T. Toyama, T. Hama, D. Adachi, Y. Nakashizu, H. Okamoto, An electroluminescence device for printable electronics using coprecipitated ZnS: Mn nanocrystal ink. Nanotechnology 20 (2009) 055203.

DOI: 10.1088/0957-4484/20/5/055203

Google Scholar

[138] D. Adachi, K. Takei, T. Toyama, H. Okamoto, Excitation mechanism of luminescence centers in nanostructured ZnS: Tb, F thin-film electroluminescent devices, Jpn. J. Appl. Phys. 47 (2007) 83–86.

DOI: 10.1143/jjap.47.83

Google Scholar

[139] W. Chen, R. Sammynaiken, Y. Huang, J.O. Malm, R. Wallenberg, J.O. Bovin, v. Zwiller, N.A. Kotov, Crystal field, phonon coupling and emission shift of Mn2+ in ZnS: Mn nanoparticles. J. Appl. Phys. 89 (2001) 1120–1129.

DOI: 10.1063/1.1332795

Google Scholar

[140] V. Wood, J.E. Halpert, M.J. Panzer, M.G. Bawendi, V. Bulovic, Alternating current driven electroluminescence from ZnSe/ZnS: Mn/ZnS nanocrystals, Nano. Lett. 9 (2009) 2367–2371.

DOI: 10.1021/nl900898t

Google Scholar

[141] H. Yang, P.H. Holloway, Electroluminescence from hybrid conjugated polymer-CdS: Mn/ZnS core–shell nanocrystals devices, J. Phys. Chem. B 107 (2003) 9705–9710.

DOI: 10.1021/jp034749i

Google Scholar

[142] Y. Yang, J. Huang, B. Yang, S. Liu, J. Shen, Electroluminescence from ZnS/CdS nanocrystal/polymer composite, Synth. Met. 91 (1997) 347–349.

DOI: 10.1016/s0379-6779(98)80057-x

Google Scholar

[143] Y. Yang, J. Huang,S. Liu, J. Shen, Preparation, characterization and electroluminescence of ZnS nanocrystals in a polymer matrix, J. Mater. Chem. 7 (1997) 131–133.

DOI: 10.1039/a603555h

Google Scholar

[144] D. Adachi, T. Morimoto, T. Hama, T. Toyama, O. Okamoto, Orange electroluminescence from chemically synthesized zinc sulfide nanocrystals doped with manganese, J. Non-Cryst. Solids 354 (2008) 2740–2743.

DOI: 10.1016/j.jnoncrysol.2007.09.080

Google Scholar

[145] A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, G. Gigli, White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer, Small 4 (2008) 2143–2147.

DOI: 10.1002/smll.200800350

Google Scholar

[146] Y.T. Nien, I.G. Chen, Raman scattering and electroluminescence of ZnS: Cu, Cl phosphor powder, Appl. Phys. Lett. 89 (2006) 261906.

DOI: 10.1063/1.2423326

Google Scholar

[147] Y. Horii, M. Kitagawa, H. Taneoka, H. Kusano, T. Murakami, Y. Hino, et al., Electro-luminescence properties of PVCz electroluminescent devices doped with nano-crystalline particles, Mater. Sci. Eng. B 85 (2001) 92–95.

DOI: 10.1016/s0921-5107(01)00536-0

Google Scholar

[148] H. Chander, Development of nanophosphors – A Review, Mater. Sci. Eng. R 49 (2005)113–155.

Google Scholar

[149] H. Yang, P.H. Holloway, B.B. Ratna, Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals, J. Appl. Phys. 93 (2003) 586–592.

DOI: 10.1063/1.1529316

Google Scholar

[150] D. Li, B.L. Clark, D.A. Keszler, P. Keir, J.F. Wager, Color control in sulfide phosphors: turning up the light for electroluminescent displays, Chem. Mater. 12 (2000) 268–270.

DOI: 10.1021/cm9904234

Google Scholar

[151] C.A. Leatherdale, C.R. Kagan, N.Y. Morgan, S. A. Empedocles, M.A. Kastner, M.G. Bawendi, Photoconductivity in CdSe quantum dot solids, Phys. Rev. B 62 (2000) 2669–2680.

DOI: 10.1103/physrevb.62.2669

Google Scholar

[152] Y. Yang, J.M. Huang, S.Y. Liu, J.C. Shen, Preparation, characterization, and electro-luminescence of ZnS nanocrystals in a polymer matrix, J. Mater. Chem. 7 (1997) 131–133.

Google Scholar

[153] S. Sahare, S. J. Dhoble, P. Singh, M. Ramrakhiani, Fabrication of ZnS: Cu/PVA nanocomposite electroluminescence devices for flat panel displays, Adv. Mat. Lett. 4(2) (2013) 169-173.

DOI: 10.5185/amlett.2012.6374

Google Scholar

[154] V. Nogriya, J. K. Dongre, M. Ramrakhiani, B. P. Chandra, electro- and photo-luminescence studies of CdS nanocrystals prepared by orgenometallic precursor, Chalcogenide Lett. 5 (2008) 365 – 373.

Google Scholar

[155] M. Ramrakhiani, Electroluminescence in Nanocrystals and Nanocomposites, International Journal of Luminescence and Applications, 1 (2011) 37 – 41.

Google Scholar

[156] P. Chouksey, B.P. Chandra, M. Ramrakhiani, Electroluminescence of CdS nanoparticles-polyvinyl carbazole composites, Indian J. Eng. Mater. Sci. 16 (2009) 157-160.

Google Scholar

[157] L.H. Shen, X.X. Cui, H.L. Qi, C.X. Zhang, Electrogenerated chemiluminescence of ZnS nanoparticles in alkaline aqueous solution, J. Phys. Chem. C 111 (2007) 8172–8175.

DOI: 10.1021/jp0703354

Google Scholar

[158] M.M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 104 (2004) 3003–3036.

Google Scholar

[159] X.F. Wang, J.J. Xu, H. Y. Chen, A new electromiluminescence emission of Mn2+-doped ZnS nanocrystals, J. Phys. Chem. C 112(2008)17581–17585.

Google Scholar

[160] H.L. Qi, Y.G. Peng, Q. Gao, C. X. Zhang, Applications of nanomaterials in electrogenerated chemiluminescence biosensors, Sensors 9 (2009) 674–695.

DOI: 10.3390/s90100674

Google Scholar

[161] W. Chen, Z.G. Wang, Z.J. Lin, L.Y. Lin, Thermoluminescence of ZnS nanoparticles. Appl. Phys. Lett. 70 (1997)1465–1467.

Google Scholar

[162] W. Chen, Z.G. Wang, Z.J. Lin, L.Y. Lin, Absorption and luminescence of the surface states in ZnS nanoparticles, J. Appl. Phys. 82 (1997) 3111–3115.

DOI: 10.1063/1.366152

Google Scholar

[163] B.P. Chandra, Mechanoluminescence, in: D.R. Vij (Ed. ), Luminescence of Solids, Plenum Press, NewYork, 1998, p.361–389.

Google Scholar

[164] B.P. Chandra, Mechanoluminescent smart materials and their applications, in: A. Stashans, S. Gonzalez, H.P. Pinto (Eds. ), Electronic and Catalytic Properties of Advanced Materials, Transworld Research Network, Trivandrum, Kerala, India, 2011, p.1.

Google Scholar

[165] B.P. Chandra, V. K. Chandra, P. Jha, in: Hardev Singh Virk (Ed. ), Luminescence Related Phenomenon and their Applications, Trans Tech Publications, 2014, p.139 – 177.

Google Scholar

[166] B.P. Chandra, Mechanoluminescence of Nanoparticles, Open Nanosci. J. 5 (Suppl 1-M4) (2011) 45-58.

Google Scholar

[167] C.N. Xu, T. Watanabe, M. Akiyama, X.G. Zheng, Artificial skin to sense mechanical stress by visible light emission, Appl. Phys. Lett. 74 (1999) 1236-1238.

DOI: 10.1063/1.123510

Google Scholar

[168] D.O. Olawale, T. Dickens, W.G. Sullivan, O. Okoli, J.O. Sobanjo, B. Wang, Progress in triboluminescence-based smart optical sensor system, J. Lumin. 131 (2011) 1407-1418.

DOI: 10.1016/j.jlumin.2011.03.015

Google Scholar

[169] B.P. Chandra, V.K. Chandra, S.K. Mahobia, P. Jha, R. Tiwari, B. Haldar, Real-time mechanoluminescence sensing of the amplitude and duration of impact, Sens. Actuators, A 173 (2012) 9-16.

DOI: 10.1016/j.sna.2011.09.043

Google Scholar

[170] N.P. Bergeron, W.A. Hollerman, S.M. Goedeke, R.J. Moore, Triboluminescent properties of zinc sulfide phosphors due to hypervelocity impact, Int. J. Impact Eng. 35 (2008) 1587-1592.

DOI: 10.1016/j.ijimpeng.2008.07.007

Google Scholar

[171] S.M. Jeong, S.S. S.K. Lee, B. Choi, Mechanically driven light – generator with high durability, Appl. Phys. Lett. 102 (2013) 051110-1-051110-5.

DOI: 10.1063/1.4791689

Google Scholar

[172] S.M. Jeong, S. Song, S.K. Lee, N.Y. Ha, Colour manipulation of mechanoluminescence from stress-activated composite films, Adv. Mater. (2013) 6194-6200.

DOI: 10.1002/adma.201301679

Google Scholar

[173] V.K. Chandra, B.P. Chandra, P. Jha, Strong luminescence induced by elastic deformation of piezoelectric crystals, Appl. Phys. Lett. 102 (2013) 241105-1-241105-8.

DOI: 10.1063/1.4811160

Google Scholar

[174] V.K. Chandra, B.P. Chandra, P. Jha, Self-recovery of mechanoluminescence in ZnS: Cu and ZnS: Mn phosphors by trapping of drifting charge carriers, Appl. Phys. Lett. 103 (2013) 161113-1-161113-5.

DOI: 10.1063/1.4825360

Google Scholar

[175] B.P. Chandra, V.K. Chandra, P. Jha, Microscopic theory of elastico-mechanoluminescent smart materials. Appl. Phys. Lett. 104 (2014) 031102-1-031102-6.

DOI: 10.1063/1.4862655

Google Scholar

[176] V.K. Chandra, B.P. Chandra, P. Jha, Mechanoluminescence of ZnS: Mn phosphors excited by hydrostatic pressure steps and pressure pulses, Physica B, 452 (2014) 23-30.

DOI: 10.1016/j.physb.2014.06.038

Google Scholar

[177] B.P. Chandra, Mechanoluminescence and its applications, Int. J. Lumin. Appl. 2 (2012) 44–72.

Google Scholar

[178] C.N. Xu, C. Li, Y. Imai, H. Yamada, Y. Adachi, K. Nishikubo, Development of elastico-luminescent nanoparticles and their applications, Adv. in Sci. and Tech. 45 (2006) 939-944.

Google Scholar

[179] C. Li, Y. Adachi, Y. Imai, K. Nishikubo, C.N. Xu, Processing and Properties of SrAl2O4: Eu Nanoparticles Prepared via Polymer- Coated Precursor. J. Electrochem. Soc. 154 (2007) J362.

DOI: 10.1149/1.2772197

Google Scholar

[180] R.D. Raja, B.K. Reddy, Laser-like mechanoluminescence in ZnMnTe diluted magnetic semiconductor, Appl. Phys. Lett. (2002) 81, 460-462.

DOI: 10.1063/1.1494116

Google Scholar

[181] B.P. Chandra, C.N. Xu, H. Yamada, X.G. Zheng, Luminescence induced by elastic deformation of ZnS: Mn nanoparticles, J. Lumin. 130 (2010) 442-450.

DOI: 10.1016/j.jlumin.2009.10.010

Google Scholar

[182] T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, C. N. Xu, Enhancement of mechanoluminescence from ZnS: Mn, Te by wet process, Key Engg. Mat. 388 (2009) 301-304.

DOI: 10.4028/www.scientific.net/kem.388.301

Google Scholar

[183] H.Y. Lu and S.Y. Chu, The mechanism and characteristics of ZnS based phosphor powders, J. Crys. Gr. 265 (2004) 476-486.

Google Scholar

[184] W. J. M. Mulder, R. Koole, R. J. Brandwijk, G. Storm, P. T. K. Chin, G. J. Strijkers, C. de Mello Donega, K. Nicolay, A. Griffioen, Quantum dots with a paramagnetic coating as a bimodal molecular, G. J.; imaging probe, Nano Letter 16 (2006) 1-6.

DOI: 10.1021/nl051935m

Google Scholar

[185] M. Vaseem, A. Umar, Y. B. Hahn, ZnO nanoparticles: Growth, properties, and applications, Metal oxide nanostructures and their applications, A. Umar and Y. B. Hahn (eds. ) 5 Chapter –IV (2010), American Scientific Publishers, pp.1-36.

Google Scholar

[186] Prashant V. Kamat, Quantum dot solar cells: Semiconductor nanocrystals as light harvesters, J. Phys. Chem. C 112 (48) (2008) 18737-18753.

DOI: 10.1021/jp806791s

Google Scholar

[187] X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wua, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications, Progress in Materials Science 56 (2011) 175–287.

DOI: 10.1016/j.pmatsci.2010.10.001

Google Scholar

[188] R.K. Chandrakar, R.N. Baghel, B.P. Chandra, Thermoluminescence of ZnS and ZnS: Mn nanoparticles, Intern. J. Lumin. Applications, 4 (2014) 45 -47.

Google Scholar

[189] P. D. Sahare, V. Kumar, Optical and Magnetic Properties of Cu-Doped ZnO Nanoparticles, International Journal of Innovative Technology and Exploring Engineering, 3 (2013) 15-21.

Google Scholar

[190] D. A. Reddy, D. H. Kim, S.J. Rhee, B. W. Lee, C. Liu, Tunable blue-green-emitting wurtzite ZnS: Mg nanosheet-assembled hierarchical spheres for near-UV white LEDs, Nanoscale Res. Lett., 9 (2014) 1-8.

DOI: 10.1186/1556-276x-9-20

Google Scholar

[191] C. Sun, C. Carpenter, G. Pratx, L. Xing, Facile Synthesis of Amine-Functionalized Eu3+- Doped La(OH)3 Nanophosphors for Bioimaging, Nanoscale Res Lett, 6 (2011) 1-7.

DOI: 10.1007/s11671-010-9768-x

Google Scholar

[192] A.S. Kuznetsov, Y-G. Lu, S. Turner, M. V. Shestakov, V. K. Tikhomirov, D. Kirilenko, J. Verbeeck, A. N. Baranov, V. V. Moshchalkov, Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters, Optical Materials Express 2 (2012).

DOI: 10.1364/ome.2.000723

Google Scholar

[193] M. Chitkara, K. Kumar, K. Singh, S. Kumar, I. S. Sandhu, Synthesis, characterization and photocatalytic activity of the samarium ion doped ZnS nanoclusters, J. Optoelectronics and Biomedical Materials, 4 (2012) 79 – 85.

Google Scholar

[194] D. R. Jung, J. Kim, C. Nahm, H. Choi, S. Nam, B. Park, Paper: Semiconductor Nanoparticles with Surface Passivation and Surface Plasmon, Electronic Materials Letters, 7 (2011) 185-194.

DOI: 10.1007/s13391-011-0902-4

Google Scholar

[195] A. Rastar, M.E. Yazdanshenas, A. Rasihidi, S. M. Bidoki, Theoretical review of optical properties of nanoparticles, J. Engin. Fibres and Fabrics 8 (2013) 85-96.

Google Scholar

[196] D. Xie, H. Peng, S. Huang, F. You, Core-Shell Structure in Doped Inorganic Nanoparticles: Approaches for Optimizing Luminescence Properties, Journal of Nanomaterials, 2013 (2013) 1-10.

DOI: 10.1155/2013/891515

Google Scholar