Carbon Nanotubes as Drug Delivery Vehicles

Article Preview

Abstract:

Various biomedical applications of nanomaterials have been proposed in the last few years leading to the emergence of a new field in diagnostics and therapeutics. Most of these applications involve the administration of nanoparticles into patients. Carbon Nanotubes are enjoying increasing popularity as building blocks for novel drug delivery systems as well as for bioimaging and biosensing. The recent strategies to functionalize carbon nanotubes have resulted in the generation of biocompatible and water-soluble carbon nanotubes that are well suited for high treatment efficacy and minimum side effects for future cancer therapies with low drug doses. The toxicological profile of such carbon nanotube systems developed as nanomedicines will have to be determined prior to any clinical studies undertaken.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 222)

Pages:

145-158

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Hanahan, R.A. Weinberg, The Hallmarks of Cancer, Cell 100 (2000) 57-70.

Google Scholar

[2] A. Kamb, S. Wee, C. Lengauer, Why is cancer drug discovery so difficult?, Nat. Rev. Drug Discov. 6 (2007) 115-120.

DOI: 10.1038/nrd2155

Google Scholar

[3] A.F. Chambers, A.C. Groom, I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer 2 (2002) 563-572.

DOI: 10.1038/nrc865

Google Scholar

[4] D.K. Chang, C.T. Lin, C.H. Wu, H.C. Wu, A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer, PLOS ONE 4 (2009) 1-11.

DOI: 10.1371/journal.pone.0004171

Google Scholar

[5] D.S. Tan, M. Gerlinger, B.T. Teh, C. Swanton, Anti-cancer drug resistance: understanding the mechanisms through the use of integrative genomics and functional RNA interference, Eur. J. Cancer 46 (2010) 2166-2177.

DOI: 10.1016/j.ejca.2010.03.019

Google Scholar

[6] A. Persidis, Cancer multidrug resistance, Nature Biotechnology 17 (1999) 94-95.

Google Scholar

[7] N.W. Shi Kam, H. Dai, Carbon nanotubes as intracellular protein transporters: Generality and biological functionality, J. Am. Chem. Soc. 127 (2005) 6021-6026.

DOI: 10.1021/ja050062v

Google Scholar

[8] C.R. Martin, P. Kohli, The emerging field of nanotube biotechnology, Nature Rev. Drug Discov. 2 (2003) 29–37.

DOI: 10.1038/nrd988

Google Scholar

[9] K. Kostarelos, The long and short of carbon nanotube toxicity, Nature Biotechnology 26 (2008)774-776.

DOI: 10.1038/nbt0708-774

Google Scholar

[10] K.W. Powers, M. Palazuelos, B.M. Moudgil, S.M. Roberts, Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies, Nanotoxicology 1 (2007) 42-51.

DOI: 10.1080/17435390701314902

Google Scholar

[11] W. Wu, S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J.P. Briand, R. Gennaro, M. Prato, A. Bianco, Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes, Angew. Chem. Int. Ed. 44 (2005) 6358-6362.

DOI: 10.1002/anie.200501613

Google Scholar

[12] Y. Li, X. Zhang, J. Lu, W. Huang, J. Cheng, Z. Luo, T. Li, F. Liu et. al. Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments, Nanotechnology 15 (2004) 1645-1649.

DOI: 10.1088/0957-4484/15/11/047

Google Scholar

[13] C. Samorì, H. AliBoucetta, R. Sainz, C. Guo, M.F. Toma, C. Fabbro, T. da Ros, M. Prato, K. Kostarelos, A. Bianco, Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers, Chem. Commun. 46 (2010).

DOI: 10.1039/b923560d

Google Scholar

[14] C. Tripisciano, E.B. Palen, Cisplatin functionalized single-walled carbon nanotubes, Physica Status Solidi 245 (2008) 1979–(1982).

DOI: 10.1002/pssb.200879558

Google Scholar

[15] C.L. Lay, H.Q. Liu, H.R. Tan, Y. Liu, Delivery of paclitaxel by physically loading onto poly- ethylene-glycol-graft carbon nanotubes for potent cancer therapeutics, Nanotechnology 21 (2010) 065101.

DOI: 10.1088/0957-4484/21/6/065101

Google Scholar

[16] W. Wu, R. Li, X. Bian, Z. Zhu, D. Ding, X. Li, Z. Jia, X. Jiang, Y. Hu, Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity, ACS Nano 3 (2009) 2740-2750.

DOI: 10.1021/nn9005686

Google Scholar

[17] X. Liu, R. H. Hurt, A. B. Kane, Biodurability of single-walled carbon nanotubes depends on surface functionalization, Carbon 48 (2010) 1961-(1969).

DOI: 10.1016/j.carbon.2010.02.002

Google Scholar

[18] Y.J. Gu, J. Cheng, J. Jin, S.H. Cheng, W.T. Wong, Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells, Int. J. Nanomedicine 6 (2011) 2889–2898.

DOI: 10.2147/ijn.s25162

Google Scholar

[19] S. Arora, R. Saharan, H. Kaur, I. Kaur, P. Bubber, L.M. Bharadwaj, Attachment of Docetaxel to Multiwalled Carbon Nanotubes for Drug Delivery Applications, Adv. Sci. Lett. 5 (2012) 1–6.

DOI: 10.1166/asl.2012.4251

Google Scholar

[20] M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes in drug design and discovery, Acc. Chem. Res. 41 (2007) 60-68.

DOI: 10.1021/ar700089b

Google Scholar

[21] G. Pastorin, Crucial Functionalizations of Carbon Nanotubes for Improved Drug Delivery: A Valuable Option? Pharm. Res. 26 (2009) 746-769.

DOI: 10.1007/s11095-008-9811-0

Google Scholar

[22] J. Meng, J. Duan, H. Kong, L. Li, C. Wang, S. Xie, S. Chen, N. Gu, H. Xu, X.D. Yang, Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy, Small 4 (2008) 1364–1370.

DOI: 10.1002/smll.200701059

Google Scholar

[23] N.W.S. Kam, M. O'Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005).

DOI: 10.1073/pnas.0502680102

Google Scholar

[24] Y. Seow, M.J. Wood, Biological Gene Delivery Vehicles: Beyond Viral Vectors, Mol. Ther. 17 (2009) 767–777.

DOI: 10.1038/mt.2009.41

Google Scholar

[25] Z. R. Yang, H. F. Wang, J. Zhao, Y. Y. Peng, J. Wang, B. A. Guinn, L. Q. Huang, Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy, Cancer Gene Ther. 14 (2007) 599–615.

DOI: 10.1038/sj.cgt.7701054

Google Scholar

[26] Z. Liu, M. Winters, M. Holodniy, H. Dai, siRNA Delivery into Human T Cells and Primary Cells with Carbon-Nanotube Transporters, Angew. Chem. Int. Ed. Engl. 46 (2007) 2023–(2027).

DOI: 10.1002/anie.200604295

Google Scholar

[27] N.W. Shi Kam, Z. Liu, H. J. Dai Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway, Angew. Chem. Int. Ed. Engl. 45 (2006) 577–581.

DOI: 10.1002/anie.200503389

Google Scholar

[28] K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic Nanoparticles for Drug Delivery in Cancer, Clin. Cancer Research 14 (2008) 1310-1316.

DOI: 10.1158/1078-0432.ccr-07-1441

Google Scholar

[29] D. Cai, J.M. Mataraza, Z.H. Qin, Z. Huang, J. Huang, T.C. Chiles, D. Carnahan, K. Kempa, Z. Ren, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing, Nature Methods 2 (2005) 449-454.

DOI: 10.1038/nmeth761

Google Scholar

[30] M. Adeli, R. Soleyman, Z. Beiranvand, F. Madani, Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions, Chem. Soc. Rev. 42 (2013) 5231-5256.

DOI: 10.1039/c3cs35431h

Google Scholar

[31] K. Kostarelos, Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science, Adv. Colloid Interface Sci. 106 (2003) 147–168.

DOI: 10.1016/s0001-8686(03)00109-x

Google Scholar

[32] S. Vardharajula, Sk Z. Ali, P. M. Tiwari, E. Eroğlu, K. Vig, V. A. Dennis, S. R. Singh, Functionalized carbon nanotubes: biomedical applications, International journal of nanomedicine 7 (2012) 5361-5374.

DOI: 10.2147/ijn.s35832

Google Scholar

[33] K. Soto, K. M. Garza, L. E. Murr, Cytotoxic effects of aggregated nanomaterials, Acta Biomater. 3 (2007) 351–358.

DOI: 10.1016/j.actbio.2006.11.004

Google Scholar

[34] K. Pulskamp, S. Diabateand, H.F. Krug, Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicol. Lett. 168 (2007) 58–74.

DOI: 10.1016/j.toxlet.2006.11.001

Google Scholar

[35] C.M. Sayes, F. Liang, J.L. Hudson, J. Mendez, W. Guo, J.M. Beach, V.C. Moore et al., Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicol. Lett. 161 (2006) 135-142.

DOI: 10.1016/j.toxlet.2005.08.011

Google Scholar

[36] D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed. Engl. 43 (2004) 5242-5246.

DOI: 10.1002/anie.200460437

Google Scholar

[37] F. Tian, D. Cui, H. Schwarz, G.G. Estrada, H. Kobayashi, Cytotoxicity of single-walled carbon nanotubes on human fibroblasts , Toxicol. in-Vitro, 20 (2006) 1202–1212.

DOI: 10.1016/j.tiv.2006.03.008

Google Scholar

[38] S. T. Yang, X. Wang, G. Jia, Y. Gu, T. Wang, H. Nie, C. Ge, H. Wang, Y. Liu, Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice, Toxicol. Lett. 181 (2008) 182–189.

DOI: 10.1016/j.toxlet.2008.07.020

Google Scholar

[39] V.S. Thakare, M. Das, A.K. Jain, S. Patil, S. Jain, Carbon nanotubes in cancer theragnosis, Nanomedicine 5 (2010) 1277–1301.

DOI: 10.2217/nnm.10.95

Google Scholar

[40] S. Li, P. He, J. Dong, Z. Guo, H. Dai, DNA-Directed Self-Assembling of Carbon Nanotubes, J. Am. Chem. Soc. 127 (2005) 14–15.

DOI: 10.1021/ja0446045

Google Scholar

[41] S.T. Yang, X. Wang, G. Jia, Y. Gu, T. Wang, H. Nie, C. Ge, H. Wang, Y. Liu, Long term accumulation and low toxicity of single walled carbon nanotubes in intravenously exposed mice, Toxicol. Lett. 181 (2008) 182-189.

DOI: 10.1016/j.toxlet.2008.07.020

Google Scholar

[42] Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res. 68 (2008) 6652-6660.

DOI: 10.1158/0008-5472.can-08-1468

Google Scholar

[43] H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J.P. Briand, M. Prato, S. Muller, A. Bianco, Functionalized carbon nanotubes are non- cytotoxic and preserve the functionality of primary immune cells, Nano Lett. 6 (2006).

DOI: 10.1021/nl068003i

Google Scholar

[44] Z. Liu, A.C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, H. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy, Angew. Chem. Int. Ed. Engl. 48 (2009) 7668-7672.

DOI: 10.1002/anie.200902612

Google Scholar

[45] B.L. Allen, G.P. Kotchey, Y. Chen, N.V. Yanamala, J. Klein-Seetharaman, V.E. Kagan, A. Star, Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes, J. Am. Chem. Soc. 131 (2009) 17194-17205.

DOI: 10.1021/ja9083623

Google Scholar

[46] Y.A. Zhao, B.L. Allen, A. Star, Enzymatic degradation of multiwalled carbon nanotubes, J. Phys. Chem. A 115 (2011) 9536-9544.

DOI: 10.1021/jp112324d

Google Scholar

[47] F.M. Freimoser, C.A. Jakob, M. Aebi, U. Tour, The MTT [3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide] Assay is a Fast and Reliable Method for Colorimetric Determination of Fungal Cell Densities, Appl. Environ. Microbiol. 65 (1999).

DOI: 10.1128/aem.65.8.3727-3729.1999

Google Scholar

[48] S. Arora., R. Kumar., H. Kaur., C. Singh., I. Kaur., S. K. Arora., J. Srivastava., and L.M. Bharadwaj, Translocation and Toxicity of Docetaxel Multi-Walled Carbon Nanotube Conjugates in Mammalian Breast Cancer Cells, J. Biomed. Nanotech. 10 (2014).

DOI: 10.1166/jbn.2014.1875

Google Scholar

[49] L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology, Adv. Drug Deliv. Rev. 58 (2006) 1460–1470.

DOI: 10.1016/j.addr.2006.09.015

Google Scholar