[1]
D. Hanahan, R.A. Weinberg, The Hallmarks of Cancer, Cell 100 (2000) 57-70.
Google Scholar
[2]
A. Kamb, S. Wee, C. Lengauer, Why is cancer drug discovery so difficult?, Nat. Rev. Drug Discov. 6 (2007) 115-120.
DOI: 10.1038/nrd2155
Google Scholar
[3]
A.F. Chambers, A.C. Groom, I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer 2 (2002) 563-572.
DOI: 10.1038/nrc865
Google Scholar
[4]
D.K. Chang, C.T. Lin, C.H. Wu, H.C. Wu, A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer, PLOS ONE 4 (2009) 1-11.
DOI: 10.1371/journal.pone.0004171
Google Scholar
[5]
D.S. Tan, M. Gerlinger, B.T. Teh, C. Swanton, Anti-cancer drug resistance: understanding the mechanisms through the use of integrative genomics and functional RNA interference, Eur. J. Cancer 46 (2010) 2166-2177.
DOI: 10.1016/j.ejca.2010.03.019
Google Scholar
[6]
A. Persidis, Cancer multidrug resistance, Nature Biotechnology 17 (1999) 94-95.
Google Scholar
[7]
N.W. Shi Kam, H. Dai, Carbon nanotubes as intracellular protein transporters: Generality and biological functionality, J. Am. Chem. Soc. 127 (2005) 6021-6026.
DOI: 10.1021/ja050062v
Google Scholar
[8]
C.R. Martin, P. Kohli, The emerging field of nanotube biotechnology, Nature Rev. Drug Discov. 2 (2003) 29–37.
DOI: 10.1038/nrd988
Google Scholar
[9]
K. Kostarelos, The long and short of carbon nanotube toxicity, Nature Biotechnology 26 (2008)774-776.
DOI: 10.1038/nbt0708-774
Google Scholar
[10]
K.W. Powers, M. Palazuelos, B.M. Moudgil, S.M. Roberts, Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies, Nanotoxicology 1 (2007) 42-51.
DOI: 10.1080/17435390701314902
Google Scholar
[11]
W. Wu, S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J.P. Briand, R. Gennaro, M. Prato, A. Bianco, Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes, Angew. Chem. Int. Ed. 44 (2005) 6358-6362.
DOI: 10.1002/anie.200501613
Google Scholar
[12]
Y. Li, X. Zhang, J. Lu, W. Huang, J. Cheng, Z. Luo, T. Li, F. Liu et. al. Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments, Nanotechnology 15 (2004) 1645-1649.
DOI: 10.1088/0957-4484/15/11/047
Google Scholar
[13]
C. Samorì, H. AliBoucetta, R. Sainz, C. Guo, M.F. Toma, C. Fabbro, T. da Ros, M. Prato, K. Kostarelos, A. Bianco, Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers, Chem. Commun. 46 (2010).
DOI: 10.1039/b923560d
Google Scholar
[14]
C. Tripisciano, E.B. Palen, Cisplatin functionalized single-walled carbon nanotubes, Physica Status Solidi 245 (2008) 1979–(1982).
DOI: 10.1002/pssb.200879558
Google Scholar
[15]
C.L. Lay, H.Q. Liu, H.R. Tan, Y. Liu, Delivery of paclitaxel by physically loading onto poly- ethylene-glycol-graft carbon nanotubes for potent cancer therapeutics, Nanotechnology 21 (2010) 065101.
DOI: 10.1088/0957-4484/21/6/065101
Google Scholar
[16]
W. Wu, R. Li, X. Bian, Z. Zhu, D. Ding, X. Li, Z. Jia, X. Jiang, Y. Hu, Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity, ACS Nano 3 (2009) 2740-2750.
DOI: 10.1021/nn9005686
Google Scholar
[17]
X. Liu, R. H. Hurt, A. B. Kane, Biodurability of single-walled carbon nanotubes depends on surface functionalization, Carbon 48 (2010) 1961-(1969).
DOI: 10.1016/j.carbon.2010.02.002
Google Scholar
[18]
Y.J. Gu, J. Cheng, J. Jin, S.H. Cheng, W.T. Wong, Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells, Int. J. Nanomedicine 6 (2011) 2889–2898.
DOI: 10.2147/ijn.s25162
Google Scholar
[19]
S. Arora, R. Saharan, H. Kaur, I. Kaur, P. Bubber, L.M. Bharadwaj, Attachment of Docetaxel to Multiwalled Carbon Nanotubes for Drug Delivery Applications, Adv. Sci. Lett. 5 (2012) 1–6.
DOI: 10.1166/asl.2012.4251
Google Scholar
[20]
M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes in drug design and discovery, Acc. Chem. Res. 41 (2007) 60-68.
DOI: 10.1021/ar700089b
Google Scholar
[21]
G. Pastorin, Crucial Functionalizations of Carbon Nanotubes for Improved Drug Delivery: A Valuable Option? Pharm. Res. 26 (2009) 746-769.
DOI: 10.1007/s11095-008-9811-0
Google Scholar
[22]
J. Meng, J. Duan, H. Kong, L. Li, C. Wang, S. Xie, S. Chen, N. Gu, H. Xu, X.D. Yang, Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy, Small 4 (2008) 1364–1370.
DOI: 10.1002/smll.200701059
Google Scholar
[23]
N.W.S. Kam, M. O'Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005).
DOI: 10.1073/pnas.0502680102
Google Scholar
[24]
Y. Seow, M.J. Wood, Biological Gene Delivery Vehicles: Beyond Viral Vectors, Mol. Ther. 17 (2009) 767–777.
DOI: 10.1038/mt.2009.41
Google Scholar
[25]
Z. R. Yang, H. F. Wang, J. Zhao, Y. Y. Peng, J. Wang, B. A. Guinn, L. Q. Huang, Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy, Cancer Gene Ther. 14 (2007) 599–615.
DOI: 10.1038/sj.cgt.7701054
Google Scholar
[26]
Z. Liu, M. Winters, M. Holodniy, H. Dai, siRNA Delivery into Human T Cells and Primary Cells with Carbon-Nanotube Transporters, Angew. Chem. Int. Ed. Engl. 46 (2007) 2023–(2027).
DOI: 10.1002/anie.200604295
Google Scholar
[27]
N.W. Shi Kam, Z. Liu, H. J. Dai Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway, Angew. Chem. Int. Ed. Engl. 45 (2006) 577–581.
DOI: 10.1002/anie.200503389
Google Scholar
[28]
K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic Nanoparticles for Drug Delivery in Cancer, Clin. Cancer Research 14 (2008) 1310-1316.
DOI: 10.1158/1078-0432.ccr-07-1441
Google Scholar
[29]
D. Cai, J.M. Mataraza, Z.H. Qin, Z. Huang, J. Huang, T.C. Chiles, D. Carnahan, K. Kempa, Z. Ren, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing, Nature Methods 2 (2005) 449-454.
DOI: 10.1038/nmeth761
Google Scholar
[30]
M. Adeli, R. Soleyman, Z. Beiranvand, F. Madani, Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions, Chem. Soc. Rev. 42 (2013) 5231-5256.
DOI: 10.1039/c3cs35431h
Google Scholar
[31]
K. Kostarelos, Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science, Adv. Colloid Interface Sci. 106 (2003) 147–168.
DOI: 10.1016/s0001-8686(03)00109-x
Google Scholar
[32]
S. Vardharajula, Sk Z. Ali, P. M. Tiwari, E. Eroğlu, K. Vig, V. A. Dennis, S. R. Singh, Functionalized carbon nanotubes: biomedical applications, International journal of nanomedicine 7 (2012) 5361-5374.
DOI: 10.2147/ijn.s35832
Google Scholar
[33]
K. Soto, K. M. Garza, L. E. Murr, Cytotoxic effects of aggregated nanomaterials, Acta Biomater. 3 (2007) 351–358.
DOI: 10.1016/j.actbio.2006.11.004
Google Scholar
[34]
K. Pulskamp, S. Diabateand, H.F. Krug, Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicol. Lett. 168 (2007) 58–74.
DOI: 10.1016/j.toxlet.2006.11.001
Google Scholar
[35]
C.M. Sayes, F. Liang, J.L. Hudson, J. Mendez, W. Guo, J.M. Beach, V.C. Moore et al., Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicol. Lett. 161 (2006) 135-142.
DOI: 10.1016/j.toxlet.2005.08.011
Google Scholar
[36]
D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed. Engl. 43 (2004) 5242-5246.
DOI: 10.1002/anie.200460437
Google Scholar
[37]
F. Tian, D. Cui, H. Schwarz, G.G. Estrada, H. Kobayashi, Cytotoxicity of single-walled carbon nanotubes on human fibroblasts , Toxicol. in-Vitro, 20 (2006) 1202–1212.
DOI: 10.1016/j.tiv.2006.03.008
Google Scholar
[38]
S. T. Yang, X. Wang, G. Jia, Y. Gu, T. Wang, H. Nie, C. Ge, H. Wang, Y. Liu, Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice, Toxicol. Lett. 181 (2008) 182–189.
DOI: 10.1016/j.toxlet.2008.07.020
Google Scholar
[39]
V.S. Thakare, M. Das, A.K. Jain, S. Patil, S. Jain, Carbon nanotubes in cancer theragnosis, Nanomedicine 5 (2010) 1277–1301.
DOI: 10.2217/nnm.10.95
Google Scholar
[40]
S. Li, P. He, J. Dong, Z. Guo, H. Dai, DNA-Directed Self-Assembling of Carbon Nanotubes, J. Am. Chem. Soc. 127 (2005) 14–15.
DOI: 10.1021/ja0446045
Google Scholar
[41]
S.T. Yang, X. Wang, G. Jia, Y. Gu, T. Wang, H. Nie, C. Ge, H. Wang, Y. Liu, Long term accumulation and low toxicity of single walled carbon nanotubes in intravenously exposed mice, Toxicol. Lett. 181 (2008) 182-189.
DOI: 10.1016/j.toxlet.2008.07.020
Google Scholar
[42]
Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res. 68 (2008) 6652-6660.
DOI: 10.1158/0008-5472.can-08-1468
Google Scholar
[43]
H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J.P. Briand, M. Prato, S. Muller, A. Bianco, Functionalized carbon nanotubes are non- cytotoxic and preserve the functionality of primary immune cells, Nano Lett. 6 (2006).
DOI: 10.1021/nl068003i
Google Scholar
[44]
Z. Liu, A.C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, H. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy, Angew. Chem. Int. Ed. Engl. 48 (2009) 7668-7672.
DOI: 10.1002/anie.200902612
Google Scholar
[45]
B.L. Allen, G.P. Kotchey, Y. Chen, N.V. Yanamala, J. Klein-Seetharaman, V.E. Kagan, A. Star, Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes, J. Am. Chem. Soc. 131 (2009) 17194-17205.
DOI: 10.1021/ja9083623
Google Scholar
[46]
Y.A. Zhao, B.L. Allen, A. Star, Enzymatic degradation of multiwalled carbon nanotubes, J. Phys. Chem. A 115 (2011) 9536-9544.
DOI: 10.1021/jp112324d
Google Scholar
[47]
F.M. Freimoser, C.A. Jakob, M. Aebi, U. Tour, The MTT [3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide] Assay is a Fast and Reliable Method for Colorimetric Determination of Fungal Cell Densities, Appl. Environ. Microbiol. 65 (1999).
DOI: 10.1128/aem.65.8.3727-3729.1999
Google Scholar
[48]
S. Arora., R. Kumar., H. Kaur., C. Singh., I. Kaur., S. K. Arora., J. Srivastava., and L.M. Bharadwaj, Translocation and Toxicity of Docetaxel Multi-Walled Carbon Nanotube Conjugates in Mammalian Breast Cancer Cells, J. Biomed. Nanotech. 10 (2014).
DOI: 10.1166/jbn.2014.1875
Google Scholar
[49]
L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology, Adv. Drug Deliv. Rev. 58 (2006) 1460–1470.
DOI: 10.1016/j.addr.2006.09.015
Google Scholar