[1]
N. S. Hush, An overview of the first half-century of molecular electronics, Ann. New York Acad. Sci., 1006 (2003) 1-20.
Google Scholar
[2]
M. Ratner, History of molecular electronics, Nature Nanotechnology, 8 (2013) 378-380.
Google Scholar
[3]
A. Aviram, M. A. Ratner, Molecular rectifiers, Chemical Physics Letters, 29 (1974) 277-283.
DOI: 10.1016/0009-2614(74)85031-1
Google Scholar
[4]
M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, The speed of information in a fast-light, optical medium, Nature, 425 (2003) 695-698.
DOI: 10.1038/nature02016
Google Scholar
[5]
S. E. Kubatkin, A. V. Danilov, H. Olin, and T. Cleason, Tunneling through a single quench-condensed cluster., Journal of Low Temperature Physics, 118 (2000) 307-316.
DOI: 10.1023/a:1004629630942
Google Scholar
[6]
E. Lörtscher, Wiring molecules into circuits, Nature Nanotechnology, 8 (2013) 381-384.
DOI: 10.1038/nnano.2013.105
Google Scholar
[7]
A. Notargiacomo, V. Foglietti, E. Cianci, G. Capellini, M. Adami, P. Faraci, F. Evangelisti, and C. Nicolini, Atomic force microscopy lithography as a nanodevice development technique, Nanotechnology, 10 (1999) 458-463.
DOI: 10.1088/0957-4484/10/4/317
Google Scholar
[8]
W. Chen, H. Ahmed, and K. Nakazoto, Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure, Applied Physics Letters, 66 (1995) 3383-3384.
DOI: 10.1063/1.113765
Google Scholar
[9]
J. Park, A. N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, et al., Coulomb blockade and the Kondo effect in single-atom transistors, Nature, 417 (2002) 722-725.
DOI: 10.1038/nature00791
Google Scholar
[10]
J. Moreland, and J. W. Ekin, Electron tunneling experiments using Nb‐Sn 'break', junctions, Journal of applied physics, 58 (1985) 3888-3895.
DOI: 10.1063/1.335608
Google Scholar
[11]
G. J. Dolan, Offset masks for lift‐off photoprocessing, Applied Physics Letters, 31 (1977) 337-339.
DOI: 10.1063/1.89690
Google Scholar
[12]
D. L. Klein, P. L. Mceuen, J. E. B. Katari, R. Roth and A. P. Alivisatos, An approach to electrical studies of single nanocrystals, Applied Physics Letters, 68 (1996) 2574-2576.
DOI: 10.1063/1.116188
Google Scholar
[13]
Y. Naitoh, T. T. Liang, H. Azehara and W. Mizutani, Measuring molecular conductivities using single molecular-sized gap junctions fabricated without using electron beam lithography, Japanese journal of applied physics, 44 (2005) L472.
DOI: 10.1143/jjap.44.l472
Google Scholar
[14]
L. F. Sun, S. N. Chin, E. Marx, K. S. Curtis, N. C. Greenham, and C. J. B. Ford, Shadow-evaporated nanometre-sized gaps and their use in electrical studies of nanocrystals, Nanotechnology, 16 (2005) 631-634.
DOI: 10.1088/0957-4484/16/6/002
Google Scholar
[15]
T. Blom, K. Welch, M. Stromme, E. Coronel and K. Leifer, Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling, Nanotechnology, 18 (2007) 285301-285307.
DOI: 10.1088/0957-4484/18/28/285301
Google Scholar
[16]
S. Zhang, S. W. Chung, and C. A. Mirkin, Fabrication of sub-50-nm solid-state nanostructures on the basis of dip-pen nanolithography, Nano Letters, 3 (2003) 43-45.
DOI: 10.1021/nl0258473
Google Scholar
[17]
D. Wei, Y. Liu, L. Cao, Y. Wang, H. Zhang, and G. Yu, Real time and in situ control of the gap size of nanoelectrodes for molecular devices, Nano letters, 8 (2008) 1625-1630.
DOI: 10.1021/nl080283+
Google Scholar
[18]
F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N. A. Alcalde, L. M. K. Vandersypen and H. Zant, Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes, Nano letters, 11 (2011) 4607-4611.
DOI: 10.1021/nl202065x
Google Scholar
[19]
X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano letters, 9 (2009) 3137-3141.
DOI: 10.1021/nl901260b
Google Scholar
[20]
M. C. Hersam, Progress towards monodisperse single-walled carbon nanotubes, Nature Nanotechnology, 3 (2008) 387-394.
DOI: 10.1038/nnano.2008.135
Google Scholar
[21]
N. Izard, S . Kazaoui, K. Hata, T. Okazaki, T. Saito, S. Ijima, and N. Minami, Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors., Applied Physics Letters, 92 (2008) 243112.
DOI: 10.1063/1.2939560
Google Scholar
[22]
L. Mieux, C. Melburne, M. Roberts, S. Barman, Y. W. Jin and Z. Bao, Self-sorted, aligned nanotube networks for thin-film transistors, Science, 321 (2008) 101-104.
DOI: 10.1126/science.1156588
Google Scholar
[23]
G. Kanwar, P. B. Agarwal, and S. Yadav, Comparative study of SWNTs dispersion in organic solvent and surfactant along with observation of multilayer Graphene, Physics of semiconductor Devices, Springer International Publishing, (2014) 603-606.
DOI: 10.1007/978-3-319-03002-9_153
Google Scholar
[24]
G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsarutip, D. Mann, L. Zhang, and H. Die, Selective etching of metallic carbon nanotubes by gas-phase reaction, Science, 314 (2006) 974-977.
DOI: 10.1126/science.1133781
Google Scholar
[25]
S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, Carbon nanotubes as Schottky barrier transistors, Physical Review Letters, 89 (2002) 106801-106804.
DOI: 10.1103/physrevlett.89.106801
Google Scholar
[26]
A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Da, Ballistic carbon nanotube field-effect transistors, Nature, 424 (2003) 654-657.
DOI: 10.1038/nature01797
Google Scholar
[27]
R. T. Weitz, U. Zschieschang, F. Effenberger, H. Klauk, M. Burghard, and K. Kern, High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer, Nano letters, 7 (2007) 22-27.
DOI: 10.1021/nl061534m
Google Scholar
[28]
S. Ilani, L. A. K. Donev, M. Kindermann, and P. L. McEuen, Measurement of the quantum capacitance of interacting electrons in carbon nanotubes, Nature Physics, 2 (2006) 687-691.
DOI: 10.1038/nphys412
Google Scholar
[29]
L. Gao, W. Ren, H. Xu, L. Jin, Z Wang, T. Ma, Z. Zhang, Q. Fu, et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nature communications, 3 (2012) 699-706.
DOI: 10.1038/ncomms1702
Google Scholar
[30]
A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81 (2009) 109-162.
DOI: 10.1103/revmodphys.81.109
Google Scholar
[31]
M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, A Graphene field effect device, IEEE Elec. Dev. Lett., 28 (2007) 1-12.
DOI: 10.1109/led.2007.891668
Google Scholar
[32]
S. M. M. Dubois, Z. Zanolli, X. Declerck, and J. C. Charlier, Electronic properties and quantum transport in Graphene-based nanostructures, Eur. Phys. J. B, 72 (2009) 1–24.
DOI: 10.1140/epjb/e2009-00327-8
Google Scholar
[33]
F. O. Yang, B. Huang, Z. Li, J. Xiao, H. Wang, and H. Xu, Chemical functionalization of graphene nano ribbons by carboxyl groups on Stone Wales Defects, J. Phys. Chem. C, 112 (2008) 12003–12007.
DOI: 10.1021/jp710547x
Google Scholar
[34]
G. P. Tang, J. C. Zhou, Z. H. Zhang, X. Q. Deng, and Z. Q. Fan, Altering regularities of electronic transport properties in twisted graphene nanoribbons, Applied Physics Letters, 101 (2012) 023104 1-5.
DOI: 10.1063/1.4733618
Google Scholar
[35]
A. Yipeng, and Z. Yang, Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects, Appl Phys Lett, 99 (2011) 192102 1-3.
DOI: 10.1063/1.3660228
Google Scholar
[36]
K. Yousuke, K. Fukui, T. Enoki, and K. Kusakabe, Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy, Phys Rev B, 73 (2006) 125415-125424.
DOI: 10.1103/physrevb.73.125415
Google Scholar
[37]
L. Zuanyi, Q. Haiyun, W. Jian, L. G. Bing, and W. Duan, Role of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias, Phys Rev Lett, 100 (2008) 206802 1-4.
Google Scholar
[38]
K. Tang, R. Qin, J. Zhou, H. Qu, J. Zheng, R. Fei, H. Li, Q. Zheng, Z. Gao, J. Lu, Electric-Field-Induced Energy Gap in Few-Layer Graphene, J. Phys. Chem. C, 115 (2011) 9458 –9464.
DOI: 10.1021/jp201761p
Google Scholar
[39]
H. N. Zhen, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and bandgap opening, ACS Nano, 2 (2008) 2301–2305.
DOI: 10.1021/nn800459e
Google Scholar
[40]
D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda1, A. Dimiev, B. K. Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature, 4 (2010) 5405–5413.
DOI: 10.1038/nature07872
Google Scholar
[41]
X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors, Phys Rev Lett, 100 (2008) 206803 1-4.
DOI: 10.1103/physrevlett.100.206803
Google Scholar
[42]
S. Datta, Quantum transport: atom to transistor, Cambridge University Press, (2005).
Google Scholar
[43]
F. Worchem, D. Gao, F. Scholz, H. Nothofer, G. Nelles, and J. Wessels, Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions., Nature nanotechnology, 5 (2010) 618-624.
DOI: 10.1038/nnano.2010.119
Google Scholar
[44]
C. Martin, D. Ding, J. Sorensen, T. Bjornholm, J. Ruitenbeek, and H. Zant, Fullerene-based anchoring groups for molecular electronics, Journal of the American Chemical Society, 130 (2008) 13198-13199.
DOI: 10.1021/ja804699a
Google Scholar
[45]
H. Park, A. Lim, A. Paul, J. Park and P. Muceun, Fabrication of metallic electrodes with nanometer separation by electromigration, Applied Physics Letters, 75 (1999) 301-303.
DOI: 10.1063/1.124354
Google Scholar
[46]
C. Marquardt, S. Gurender, A. Baszczyk, S. Dehm, F. Henrich, H. Lohneysen, M Mayor, and R. Krupke, Electroluminescence from a single nanotube-molecule-nanotube junction, Nature nanotechnology, 5 (2010) 863-867.
DOI: 10.1038/nnano.2010.230
Google Scholar
[47]
International Roadmap Committee, International technology roadmap for semi-conductors, www. itrs. net/Links/2003ITRS/ExecSum2003. pdf (2003).
Google Scholar
[48]
Y. Cao, S. Dong, S. Liu, P. Z. Liu, and P. X. Guo, Toward functional molecular devices based on Graphene–molecule junctions, Angewandte Chemie International Edition, 52 (2013) 3998-4002.
DOI: 10.1002/ange.201208210
Google Scholar