Nano Electronics: A New Era of Devices

Article Preview

Abstract:

The technical and economic growth of the twentieth century was marked by evolution of electronic devices and gadgets. The day-to-day lifestyle has been significantly affected by the advancement in communication systems, information systems and consumer electronics. The lifeline of progress has been the invention of the transistor and its dynamic up-gradation. Discovery of fabricating Integrated Circuits (IC’s) revolutionized the concept of electronic circuits. With advent of time the size of components decreased, which led to increase in component density. This trend of decreasing device size and denser integrated circuits is being limited by the current lithography techniques. Non-uniformity of doping, quantum mechanical tunneling of electrons from source to drain and leakage of electrons through gate oxide limit scaling down of devices. Heat dissipation and capacitive coupling between circuit components becomes significant with decreasing size of the components. Along with the intrinsic technical limitations, downscaling of devices to nanometer sizes leads to a change in the physical mechanisms controlling the charge propagation. To deal with this constraint, the search is on to look around for alternative materials for electronic device application and new methods for electronic device fabrication. Such material is comprised of organic molecules, proteins, carbon materials, DNA and the list is endless which can be grown in the laboratory. Many molecules show interesting electronic properties, which make them probable candidates for electronic device applications. The challenge is to interpret their electronic properties at nanoscale so as to exploit them for use in new generation electronic devices. Need to trim downsize and have a higher component density have ushered us into an era of nanoelectronics.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 222)

Pages:

99-116

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. S. Hush, An overview of the first half-century of molecular electronics, Ann. New York Acad. Sci., 1006 (2003) 1-20.

Google Scholar

[2] M. Ratner, History of molecular electronics, Nature Nanotechnology, 8 (2013) 378-380.

Google Scholar

[3] A. Aviram, M. A. Ratner, Molecular rectifiers, Chemical Physics Letters, 29 (1974) 277-283.

DOI: 10.1016/0009-2614(74)85031-1

Google Scholar

[4] M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, The speed of information in a fast-light, optical medium, Nature, 425 (2003) 695-698.

DOI: 10.1038/nature02016

Google Scholar

[5] S. E. Kubatkin, A. V. Danilov, H. Olin, and T. Cleason, Tunneling through a single quench-condensed cluster., Journal of Low Temperature Physics, 118 (2000) 307-316.

DOI: 10.1023/a:1004629630942

Google Scholar

[6] E. Lörtscher, Wiring molecules into circuits, Nature Nanotechnology, 8 (2013) 381-384.

DOI: 10.1038/nnano.2013.105

Google Scholar

[7] A. Notargiacomo, V. Foglietti, E. Cianci, G. Capellini, M. Adami, P. Faraci, F. Evangelisti, and C. Nicolini, Atomic force microscopy lithography as a nanodevice development technique, Nanotechnology, 10 (1999) 458-463.

DOI: 10.1088/0957-4484/10/4/317

Google Scholar

[8] W. Chen, H. Ahmed, and K. Nakazoto, Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure, Applied Physics Letters, 66 (1995) 3383-3384.

DOI: 10.1063/1.113765

Google Scholar

[9] J. Park, A. N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, et al., Coulomb blockade and the Kondo effect in single-atom transistors, Nature, 417 (2002) 722-725.

DOI: 10.1038/nature00791

Google Scholar

[10] J. Moreland, and J. W. Ekin, Electron tunneling experiments using Nb‐Sn 'break', junctions, Journal of applied physics, 58 (1985) 3888-3895.

DOI: 10.1063/1.335608

Google Scholar

[11] G. J. Dolan, Offset masks for lift‐off photoprocessing, Applied Physics Letters, 31 (1977) 337-339.

DOI: 10.1063/1.89690

Google Scholar

[12] D. L. Klein, P. L. Mceuen, J. E. B. Katari, R. Roth and A. P. Alivisatos, An approach to electrical studies of single nanocrystals, Applied Physics Letters, 68 (1996) 2574-2576.

DOI: 10.1063/1.116188

Google Scholar

[13] Y. Naitoh, T. T. Liang, H. Azehara and W. Mizutani, Measuring molecular conductivities using single molecular-sized gap junctions fabricated without using electron beam lithography, Japanese journal of applied physics, 44 (2005) L472.

DOI: 10.1143/jjap.44.l472

Google Scholar

[14] L. F. Sun, S. N. Chin, E. Marx, K. S. Curtis, N. C. Greenham, and C. J. B. Ford, Shadow-evaporated nanometre-sized gaps and their use in electrical studies of nanocrystals, Nanotechnology, 16 (2005) 631-634.

DOI: 10.1088/0957-4484/16/6/002

Google Scholar

[15] T. Blom, K. Welch, M. Stromme, E. Coronel and K. Leifer, Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling, Nanotechnology, 18 (2007) 285301-285307.

DOI: 10.1088/0957-4484/18/28/285301

Google Scholar

[16] S. Zhang, S. W. Chung, and C. A. Mirkin, Fabrication of sub-50-nm solid-state nanostructures on the basis of dip-pen nanolithography, Nano Letters, 3 (2003) 43-45.

DOI: 10.1021/nl0258473

Google Scholar

[17] D. Wei, Y. Liu, L. Cao, Y. Wang, H. Zhang, and G. Yu, Real time and in situ control of the gap size of nanoelectrodes for molecular devices, Nano letters, 8 (2008) 1625-1630.

DOI: 10.1021/nl080283+

Google Scholar

[18] F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N. A. Alcalde, L. M. K. Vandersypen and H. Zant, Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes, Nano letters, 11 (2011) 4607-4611.

DOI: 10.1021/nl202065x

Google Scholar

[19] X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano letters, 9 (2009) 3137-3141.

DOI: 10.1021/nl901260b

Google Scholar

[20] M. C. Hersam, Progress towards monodisperse single-walled carbon nanotubes, Nature Nanotechnology, 3 (2008) 387-394.

DOI: 10.1038/nnano.2008.135

Google Scholar

[21] N. Izard, S . Kazaoui, K. Hata, T. Okazaki, T. Saito, S. Ijima, and N. Minami, Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors., Applied Physics Letters, 92 (2008) 243112.

DOI: 10.1063/1.2939560

Google Scholar

[22] L. Mieux, C. Melburne, M. Roberts, S. Barman, Y. W. Jin and Z. Bao, Self-sorted, aligned nanotube networks for thin-film transistors, Science, 321 (2008) 101-104.

DOI: 10.1126/science.1156588

Google Scholar

[23] G. Kanwar, P. B. Agarwal, and S. Yadav, Comparative study of SWNTs dispersion in organic solvent and surfactant along with observation of multilayer Graphene, Physics of semiconductor Devices, Springer International Publishing, (2014) 603-606.

DOI: 10.1007/978-3-319-03002-9_153

Google Scholar

[24] G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsarutip, D. Mann, L. Zhang, and H. Die, Selective etching of metallic carbon nanotubes by gas-phase reaction, Science, 314 (2006) 974-977.

DOI: 10.1126/science.1133781

Google Scholar

[25] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, Carbon nanotubes as Schottky barrier transistors, Physical Review Letters, 89 (2002) 106801-106804.

DOI: 10.1103/physrevlett.89.106801

Google Scholar

[26] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Da, Ballistic carbon nanotube field-effect transistors, Nature, 424 (2003) 654-657.

DOI: 10.1038/nature01797

Google Scholar

[27] R. T. Weitz, U. Zschieschang, F. Effenberger, H. Klauk, M. Burghard, and K. Kern, High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer, Nano letters, 7 (2007) 22-27.

DOI: 10.1021/nl061534m

Google Scholar

[28] S. Ilani, L. A. K. Donev, M. Kindermann, and P. L. McEuen, Measurement of the quantum capacitance of interacting electrons in carbon nanotubes, Nature Physics, 2 (2006) 687-691.

DOI: 10.1038/nphys412

Google Scholar

[29] L. Gao, W. Ren, H. Xu, L. Jin, Z Wang, T. Ma, Z. Zhang, Q. Fu, et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nature communications, 3 (2012) 699-706.

DOI: 10.1038/ncomms1702

Google Scholar

[30] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81 (2009) 109-162.

DOI: 10.1103/revmodphys.81.109

Google Scholar

[31] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, A Graphene field effect device, IEEE Elec. Dev. Lett., 28 (2007) 1-12.

DOI: 10.1109/led.2007.891668

Google Scholar

[32] S. M. M. Dubois, Z. Zanolli, X. Declerck, and J. C. Charlier, Electronic properties and quantum transport in Graphene-based nanostructures, Eur. Phys. J. B, 72 (2009) 1–24.

DOI: 10.1140/epjb/e2009-00327-8

Google Scholar

[33] F. O. Yang, B. Huang, Z. Li, J. Xiao, H. Wang, and H. Xu, Chemical functionalization of graphene nano ribbons by carboxyl groups on Stone Wales Defects, J. Phys. Chem. C, 112 (2008) 12003–12007.

DOI: 10.1021/jp710547x

Google Scholar

[34] G. P. Tang, J. C. Zhou, Z. H. Zhang, X. Q. Deng, and Z. Q. Fan, Altering regularities of electronic transport properties in twisted graphene nanoribbons, Applied Physics Letters, 101 (2012) 023104 1-5.

DOI: 10.1063/1.4733618

Google Scholar

[35] A. Yipeng, and Z. Yang, Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects, Appl Phys Lett, 99 (2011) 192102 1-3.

DOI: 10.1063/1.3660228

Google Scholar

[36] K. Yousuke, K. Fukui, T. Enoki, and K. Kusakabe, Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy, Phys Rev B, 73 (2006) 125415-125424.

DOI: 10.1103/physrevb.73.125415

Google Scholar

[37] L. Zuanyi, Q. Haiyun, W. Jian, L. G. Bing, and W. Duan, Role of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias, Phys Rev Lett, 100 (2008) 206802 1-4.

Google Scholar

[38] K. Tang, R. Qin, J. Zhou, H. Qu, J. Zheng, R. Fei, H. Li, Q. Zheng, Z. Gao, J. Lu, Electric-Field-Induced Energy Gap in Few-Layer Graphene, J. Phys. Chem. C, 115 (2011) 9458 –9464.

DOI: 10.1021/jp201761p

Google Scholar

[39] H. N. Zhen, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and bandgap opening, ACS Nano, 2 (2008) 2301–2305.

DOI: 10.1021/nn800459e

Google Scholar

[40] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda1, A. Dimiev, B. K. Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature, 4 (2010) 5405–5413.

DOI: 10.1038/nature07872

Google Scholar

[41] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors, Phys Rev Lett, 100 (2008) 206803 1-4.

DOI: 10.1103/physrevlett.100.206803

Google Scholar

[42] S. Datta, Quantum transport: atom to transistor, Cambridge University Press, (2005).

Google Scholar

[43] F. Worchem, D. Gao, F. Scholz, H. Nothofer, G. Nelles, and J. Wessels, Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions., Nature nanotechnology, 5 (2010) 618-624.

DOI: 10.1038/nnano.2010.119

Google Scholar

[44] C. Martin, D. Ding, J. Sorensen, T. Bjornholm, J. Ruitenbeek, and H. Zant, Fullerene-based anchoring groups for molecular electronics, Journal of the American Chemical Society, 130 (2008) 13198-13199.

DOI: 10.1021/ja804699a

Google Scholar

[45] H. Park, A. Lim, A. Paul, J. Park and P. Muceun, Fabrication of metallic electrodes with nanometer separation by electromigration, Applied Physics Letters, 75 (1999) 301-303.

DOI: 10.1063/1.124354

Google Scholar

[46] C. Marquardt, S. Gurender, A. Baszczyk, S. Dehm, F. Henrich, H. Lohneysen, M Mayor, and R. Krupke, Electroluminescence from a single nanotube-molecule-nanotube junction, Nature nanotechnology, 5 (2010) 863-867.

DOI: 10.1038/nnano.2010.230

Google Scholar

[47] International Roadmap Committee, International technology roadmap for semi-conductors, www. itrs. net/Links/2003ITRS/ExecSum2003. pdf (2003).

Google Scholar

[48] Y. Cao, S. Dong, S. Liu, P. Z. Liu, and P. X. Guo, Toward functional molecular devices based on Graphene–molecule junctions, Angewandte Chemie International Edition, 52 (2013) 3998-4002.

DOI: 10.1002/ange.201208210

Google Scholar