Oxide Nanomaterials and their Applications as a Memristor

Article Preview

Abstract:

Nowadays, oxide nanomaterials have received great attention due to their unique semiconducting, optical and electrical properties. Oxide nanomaterials exhibit these properties due to their small size, high surface area to volume ratio and great biocompatibility. The chemical activity of the oxide nanomaterials is highly enhanced by the presence of oxygen vacancies in these materials. This review article outlined the unique properties, synthesis techniques and applications of oxide nanomaterials.The important and unique properties of TiO2 and ZnO nanomaterials with their possible crystal structures have been discussed. In application part, the oxide nanomaterials especially ZnO has been discussed for memory device applications. To control the performance of oxide nanomaterials for memristor device application, a better understanding of their properties is required.Table of Contents

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 222)

Pages:

67-97

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Fernández-García, A. Martínez-Arias, J.C. Hanson, J.A. Rodríguez, Nanostructured oxides in chemistry: Characterization and properties, Chem. Rev. 104 (2004) 4063-4104.

DOI: 10.1021/cr030032f

Google Scholar

[2] L. Zhang, J. Liu, H. Xiao, D. Liu, Y. Qin, H. Wu, H. Li, N. Du, W. Hou, Preparation and properties of mixed metal oxides based layered double hydroxide as anode materials for dye-sensitized solar cell, Chem. Eng. J. 250 (2014) 1–5.

DOI: 10.1016/j.cej.2014.03.098

Google Scholar

[3] E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi, A. Ponzoni, A. Vomiero, D. Zappa, V. Sberveglieri, G. Sberveglieri, Metal oxide nanoscience and nanotechnology for chemical sensors, Sensor ActuatB. 179 (2013).

DOI: 10.1016/j.snb.2012.10.027

Google Scholar

[4] M. Rani, S.K. Tripathi, Fabrication, characterization and photoconducting behaviour of mesoporous ZnO, TiO2 and TiO2/ZnO bilayer system: comparative study, Energy Environ. Focus 2 (2013) 227-234.

DOI: 10.1166/eef.2013.1055

Google Scholar

[5] M. Shelef, G.W. Graham, R.W. McCabe, In Catalysis by Ceria and Related Materials, Trovarelli, A. (Editor); Imperial College Press, London, (2002).

Google Scholar

[6] S.E. Savelev, A.S. Alexandrov, A.M. Bratkovsky, R.S. Williams, Molecular dynamics simulations of oxide memory resistors (memristors), Nanotechnology. 22 (2011) 254011 (1-7).

DOI: 10.1088/0957-4484/22/25/254011

Google Scholar

[7] J.P. Strachan, J.J. Yang, R. Munstermann, A. Scholl, G. Medeiros-Ribeiro, D.R. Stewart, R. S. Williams, Structural and chemical characterization of TiO2 memristive devices by spatially-resolved NEXAFS, Nanotechnology. 20 (2009) 485701(1-6).

DOI: 10.1088/0957-4484/20/48/485701

Google Scholar

[8] Duo Li, Maozhi Li, Ferdows Zahid, Jian Wang, Hong Guo, Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study, J. Appl. Phys. 112 (2012) 073512(1-7).

DOI: 10.1063/1.4757584

Google Scholar

[9] J. Schoiswohl, G. Kresse, S. Surnev, M. Sock, M.G. Ramsey, F.P. Netzer, Planar Vanadium Oxide Clusters: Two-Dimensional Evaporation and Diffusion on Rh(111), Phys. Rev. Lett. 92(2004) 206103(1-4).

DOI: 10.1103/physrevlett.92.206103

Google Scholar

[10] S.K. Tripathi, Oxide nanostructure, Edited by A, K, Srivastava, CRC Press: Pan Stanford Publishing, ISBN 978-981-4411-35-6 (2013) 255.

Google Scholar

[11] G. Skandan C.M. Foster, H. Frase, M.N. Ali, J.C. Parker, H. Hahn, Phase characterization and stabilization due to grain size effects of nanostructured Y2O3, Nanostruct. Mater. 1 (1992) 313-322.

DOI: 10.1016/0965-9773(92)90038-y

Google Scholar

[12] R.C. Garvie, M.F. Goss, Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals, J. Mater. Sci. 21(1986) 1253-1257.

DOI: 10.1007/bf00553259

Google Scholar

[13] M.D. Hernández-Alonso, A.B. Hungría, J.M. Coronado, A. Martínez-Arias, J.C. Conesa, J. Soria, M.F. García, Confinement effects in quasi-stoichiometric CeO2 nanoparticles, Phys. Chem. Chem. Phys. 6 (2004) 3524-3529.

DOI: 10.1039/b403202k

Google Scholar

[14] J. Gangwar, K.K. Dey, S.K. Tripathi, M. Wan, R.R. Yadav, R.K. Singh, Samta, A.K. Srivastava, NiO-based nanostructures with efficient optical and electrochemical properties for high-performance nanofluidsNanotechnology 24 (2013) 415705 (1-15).

DOI: 10.1088/0957-4484/24/41/415705

Google Scholar

[15] W. Zhang, Z. Liu, Z. Liu, J. Zhao, Effect of calcination temperature on the structural and optical properties of ZnO: Fe powders, Appl. Surf. Sci. 258(2014) 6103-6106.

DOI: 10.1016/j.apsusc.2012.03.011

Google Scholar

[16] P. Moriarty, Nanostructured materials, Rep. Prog. Phys. 64 (2001) 297-381.

Google Scholar

[17] U. Woggon, Optical properties of semiconductor quantum dots, Springer, Berlin, 136, (1996).

Google Scholar

[18] T. Albaret, F. Finocchi, C. Noguera, First principles simulations of titanium oxide clusters and surfaces, Faraday Discuss. 114(1999) 285-304.

DOI: 10.1039/a903066b

Google Scholar

[19] J.A. Rodriguez, A. Maiti, Adsorption and decomposition of H2S on MgO(100), NiMgO(100), and ZnO(0001) surfaces: A first-principles density functional study,J. Phys. Chem. B. 104 (2000) 3630-3638.

DOI: 10.1021/jp000011e

Google Scholar

[20] J.A. Rodriguez, Orbital-band interactions and the reactivity of molecules on oxide surfaces: from explanations to predictions, Theor. Chem. Acc. 107(2002) 117-129.

Google Scholar

[21] Y. Shen, H. Zhao, J. Xu, X. Zhang, K. Zheng, K. Swierczek, Effect of ionic size of dopants on the lattice structure, electrical and electrochemical properties of La2-xMxNiO4+δ (M = Ba, Sr) cathode materials, Int. J. Hydrogen Energ. 39 (2014).

DOI: 10.1016/j.ijhydene.2013.10.153

Google Scholar

[22] H. Luth, Surface and Interface of Solid Materials, Springer, Berlin, (1997).

Google Scholar

[23] E. Lucas, S. Decker, A. Khaleel, A. Seitz, S. Futlz, A. Ponce, W. Li, C. Carnes, K.J. Klabunde, Nanocrystalline metal oxides as unique chemical reagents/sorbents, Chem. Eur. J. 7 (2001) 2505-2510.

DOI: 10.1002/1521-3765(20010618)7:12<2505::aid-chem25050>3.0.co;2-r

Google Scholar

[24] J.A. Rodriguez, J. Hrbek, J. Dvorak, T. Jirsak, A. Maiti, Interaction of sulfur with TiO2(110): Photoemission and density-functional studies, Chem. Phys. Lett., 336(2001) 377-384.

DOI: 10.1016/s0009-2614(01)00182-8

Google Scholar

[25] B.J. Scott, G. Wirnsberger, G.D. Stocky, Mesoporous and mesostructured materials for optical applications, Chem. Mater. 13 (2001) 3140-3150.

DOI: 10.1021/cm0110730

Google Scholar

[26] A.D. Yoffre, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys. 50 (2001) 1-208.

DOI: 10.1080/00018730010006608

Google Scholar

[27] Y.D. Glinka, S.H. Lin, L.P. Hwang, Y.T. Chen, N.H. Tolk, Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials, Phys. Rev. B 64 (2001) 085421 (1-11).

DOI: 10.1103/physrevb.64.085421

Google Scholar

[28] L.K. Pan, C.Q. Sun, Coordination imperfection enhanced electron-phonon interaction, J. Appl. Phys. 95 (2004) 3819-3821.

DOI: 10.1063/1.1646469

Google Scholar

[29] R.S. Knoxy, Theory of exciton; Solid state physics, Supplement 5, Academic Press, New York, (1963).

Google Scholar

[30] U. Woggon, Optical properties of semiconductor quantum dots, Vol. 136, Springer, (1996).

Google Scholar

[31] A.L. Efros, M. Rosen, The electronic structure of semiconductor nanocrystals, Annu. Rev. Mater. Sci. 30 (2000) 475-521.

DOI: 10.1146/annurev.matsci.30.1.475

Google Scholar

[32] M. Iwamoto, T. Abe, Y. Tachibana, Control of bandgap of iron oxide through its encapsulation into SiO2 based mesoporous materials, J. Mol. Catal. A. 55 (2000) 143-153.

DOI: 10.1016/s1381-1169(99)00330-1

Google Scholar

[33] O. Vigil, F. Cruz, A. Morales-Acabedo, G. Contreras-Puente, L. Vaillant, G. Santana, Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis, Mat. Chem. Phys. 68 (2001) 249-252.

DOI: 10.1016/s0254-0584(00)00358-8

Google Scholar

[34] K. Borgohain, N. Morase, S. Mahumani, Synthesis and properties of Cu2O quantum particles, J. Appl. Phys. 92 (2002) 1292-1297.

Google Scholar

[35] T. Suzuki, I. Kosacki, V. Petrovsky, H.U. Anderson, Optical properties of undoped and Gd-doped CeO2 nanocrystalline thin films, J. Appl. Phys. 91 (2001) 2308-2314.

DOI: 10.1063/1.1430890

Google Scholar

[36] S. Monticone, R. Tufeu, A.V. Kanaev, E. Scolan, C. Sánchez, Quantum size effect in TiO2 nanoparticles: does it exist?, Appl. Surf. Sci. 162-163 (2000) 565-570.

DOI: 10.1016/s0169-4332(00)00251-8

Google Scholar

[37] L. Li, X. Qui, G. Li, Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures, Appl. Phys. Lett. 87 (2005) 124101 (1-3).

DOI: 10.1063/1.2051800

Google Scholar

[38] M.F. Garcia, X. Wang, C. Belver, Hanson, A. Iglesias-Juez, J.A. Rodriguez, Ca Doping of Nanosize Ce-Zr and Ce-Tb Solid Solutions: Structural and Electronic Effects, Chem. Mater. 17 (2005) 4181-4193.

DOI: 10.1021/cm050265i

Google Scholar

[39] H.C. Ong, A.X.E. Zhu, G.T. Du, Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films, Appl. Phys. Lett. 80 (2002) 941-943.

DOI: 10.1063/1.1448660

Google Scholar

[40] G.L. Miessler, D.A. Tarr, Inorganic Chemistry, 2nd Ed., Prentice-Hall Inc, New Jersey, (1999).

Google Scholar

[41] D.F. Shriver, P.W. Atkins, Inorganic Chemistry, 3rd Ed., Oxford University Press, Oxford, (1999).

Google Scholar

[42] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[43] R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Electronic and optical properties of anatase TiO2, J. Phys. Rev. B 61 (2000) 7459-7465.

Google Scholar

[44] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chem. 32(2004) 33-177.

DOI: 10.1016/j.progsolidstchem.2004.08.001

Google Scholar

[45] J. Ohring, The Material Science of Thin Films, Academic-Press, San Diego, (1992).

Google Scholar

[46] G.K. Hubler, X-ray investigation of the solid solution Zn1−XCuXCr2S4 with spinel structure, Mater. Res. Bull. 17 (1992) 25-28.

Google Scholar

[47] L. D´Souza, R. Richards, Synthesis of metal-oxide nanoparticles: Liquid-solid transformations in synthesis, properties and applications of oxide nanoparticles, (Rodríguez, J.A., Fernández-García, M; Eds. ). N. J. Whiley, (2007).

DOI: 10.1002/9780470108970.ch3

Google Scholar

[48] K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Geenstaff, Sonochemical Synthesis of Amorphous Iron, Nature, 353 (1991) 414-416.

DOI: 10.1038/353414a0

Google Scholar

[49] J.F. Chen, Y.H. Wang, F. Gou, X.M. Wang, C. Zheng, Synthesis of nanoparticles with novel technology: High-gravity reactive precipitation, Ind. Eng. Chem. Res. 39 (2002) 948-954.

DOI: 10.1021/ie990549a

Google Scholar

[50] V. Uskokovick, M. Drofenik, Synthesis of materials within reverse micelles, Surf. Rev. Letter, 12(2005) 239-277.

DOI: 10.1142/s0218625x05007001

Google Scholar

[51] M. Rani, S.K. Tripathi, Effect of Eosin Y dye on electrical properties of ZnO filmsynthesized by sol–gel technique, J. Electron Mater, 43 (2014) 426-434.

DOI: 10.1007/s11664-013-2925-0

Google Scholar

[52] M. Rani, Saeed J. Abbas, S.K. Tripathi, Influence of annealing temperature and organic dyes as sensitizers on sol–gel derived TiO2 films, Mater. Sci. Eng. B, 187 (2014) 75–82.

DOI: 10.1016/j.mseb.2014.04.010

Google Scholar

[53] C. Bechinger, S. Ferrer, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays, Nature, 383(1996) 608-610.

DOI: 10.1038/383608a0

Google Scholar

[54] R. Cinnsealach, G. Boschloo, S.N. Rao, D. Fitzmaurice, Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores, Sol. Energy Mater. Sol. Cells 57 (1999) 107-125.

DOI: 10.1016/s0927-0248(98)00156-1

Google Scholar

[55] E. Topoglidis, E. Palomares, Y. Astuti, A. Green, C.J. Campbell, J.R. Durrant, Immobilization and electrochemistry of negatively charged proteins on modified nanocrystalline metal oxide electrodes, Electroanalysis, 17 (2005)1035-1041.

DOI: 10.1002/elan.200403211

Google Scholar

[56] M. Grätzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.

Google Scholar

[57] M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem. 164 (2004) 3-14.

DOI: 10.1016/j.jphotochem.2004.08.014

Google Scholar

[58] C. Lévy-Clément, R. Tena-Zaera, M. -A. Ryan, A. Katty, G. Hodes, CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions, Adv. Mat. 17 (2005) 1512-1515.

DOI: 10.1002/adma.200401848

Google Scholar

[59] R. Könenkamp, R.C. Word, M. Godinez, Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes, Nano Lett. 5 (2005) 2005-(2008).

DOI: 10.1021/nl051501r

Google Scholar

[60] C. Jorand-Sartoretti, B.D. Alexander, R. Solarska, I.A. Rutkowska, J. Augustynski, R. Cerny, Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes, J. Phys. Chem. B, 109 (2005) 13685-13692.

DOI: 10.1021/jp051546g

Google Scholar

[61] A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mat. 4 (2005) 366-377.

DOI: 10.1038/nmat1368

Google Scholar

[62] A.L. Linsebigler, G.Q. Lu, J.T. Yates, Photocatalysis on TiOn surfaces: Principles, mechanisms, and selected results, Chem Rev 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[63] I.M. Butterfield, P.A. Christensen, T.P. Curtis, J. Gunlazuardi, Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement, Water Res 31 (1997) 675-677.

DOI: 10.1016/s0043-1354(96)00391-0

Google Scholar

[64] K.H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications, Nano Lett. 12 (2012) 389−395.

DOI: 10.1021/nl203687n

Google Scholar

[65] T.D. Dongale, S.S. Shinde, R.K. Kamat, K.Y. Rajpure, Nanostructured TiO2 thin film memristor using hydrothermal process, J Alloy Compd. 593 (2014) 267–270.

DOI: 10.1016/j.jallcom.2014.01.093

Google Scholar

[66] A. Sawa, Resistive switching in transition metal oxides, Mater. Today 11(6) (2008) 28-36.

DOI: 10.1016/s1369-7021(08)70119-6

Google Scholar

[67] B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke: Resistive switching mechanism of TiO2 thin films grown by atomic layer deposition. J. Appl. Phys. 98 (2005).

DOI: 10.1063/1.2001146

Google Scholar

[68] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching, Appl. Phys. Lett. 89 (2006) 223509(1-3).

DOI: 10.1063/1.2397006

Google Scholar

[69] K. Tsunoda, Y. Fukuzumi, J.R. Jameson, Z. Wang, P.B. Griffin, Y. Nishi, Bipolar resistive switching in polycrystalline TiO2 films, Appl. Phys. Lett. 90 (2007) 113501(1-3).

DOI: 10.1063/1.2712777

Google Scholar

[70] M.J. Lee, S. Seo, D.C. Kim, S.E. Ahn, D.H. Seo, I.K. Yoo, I.G. Baek, D.S. Kim, I.S. Byun, S.H. Kim, I.R. Hwang, J.S. Kim, S.H. Jeon, B.H. Park, A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories, Adv. Mater. 19(2007).

DOI: 10.1002/adma.200601025

Google Scholar

[71] J.J. Yang, J.P. Strachan, F. Miao, M-X. Zhang, M.D. Pickett, W. Yi, D.A.A. Ohlberg, G. Medeiros-Ribeiro, R.S. Williams, Metal/TiO2 interfaces for memristive switches, Appl. Phys. A 102, (2011) 785-789.

DOI: 10.1007/s00339-011-6265-8

Google Scholar

[72] L.O. Chua, Memristor – the Missing Circuit Element, IEEE T. Circuit Theory 18, (1971) 507-519.

DOI: 10.1109/tct.1971.1083337

Google Scholar

[73] L.O. Chua and S. M. Kang, Memristive Devices and Systems, P. IEEE 64, (1976) 209-223.

Google Scholar

[74] D.B. Strukov, G.S. Snider, D.R. Stuwart, R.S. Williams, The Missing Memristor Found, Nature 453 (2008) 80-83.

DOI: 10.1038/nature06932

Google Scholar

[75] Z.J. Chew, L. Li, A discrete memristor made of ZnO nanowires synthesized on printed circuit board, Materials Letters 91 (2013) 298-300.

DOI: 10.1016/j.matlet.2012.10.011

Google Scholar

[76] F.M. Bayat, S.B. Shouraki, Memristor-based circuits for performing basic arithmetic operations, Procedia Computer Science 3 (2011) 128–132.

DOI: 10.1016/j.procs.2010.12.022

Google Scholar

[77] Alexander A. Zakhidov, Byungki Jung, Jason D. Slinker, Héctor D. Abruña, George G. Malliaras. A light-emitting memristor. Organic Electronics 11 (2010) 150–153.

DOI: 10.1016/j.orgel.2009.09.015

Google Scholar

[78] Y.V. Pershin, M.D. Ventra, Solving mazes with memrsitors: a massively parallel approach, Physical Review E 84 (2011) 046703(1-6).

DOI: 10.1103/physreve.84.046703

Google Scholar

[79] G.E. Pazienza, R. Kozma, Memristor as an archetype of dynamic data-driven systems and applications to sensor networks, Procedia Computer Science 4 (2011) 1782–1787.

DOI: 10.1016/j.procs.2011.04.193

Google Scholar

[80] E. Gale, B.L. Costello, A. Adamatzky, Memristor-based information gathering approaches, both ant-inspired and hypothetical, Nano Communication Networks 3 (2012) 203–216.

DOI: 10.1016/j.nancom.2012.09.005

Google Scholar

[81] F.M. Bayat, S.B. Shouraki, Programming of memristor crossbars by using genetic algorithm, Procedia Computer Science. 3 (2011) 232–237.

DOI: 10.1016/j.procs.2010.12.039

Google Scholar

[82] R. Waser, M. Aono, Nanoionics-based resitive switching memories, Nature Materials 6 (2007) 833–840.

DOI: 10.1038/nmat2023

Google Scholar

[83] P. Kuekes, Material Implication: digital logic with memristors, Memristor and Memristive Systems Symposium, 21 November (2008).

Google Scholar

[84] S. Shin, K. Kim, S.M. Kang, Memristor-based fine resolution resistance and its applications, ICCCAS 2009, July (2009).

Google Scholar

[85] X.Y. Wang, A.L. Fitch, H.H.C. Iu, W.G. Qi, Design of a memcapacitor emulator based on a memristor, Physics Letters A 376 (2012) 394–399.

DOI: 10.1016/j.physleta.2011.11.012

Google Scholar

[86] J.E. Yoo, K. Lee, A. Tighineanu, P. Schmuki, Highly ordered TiO2 nanotube-stumps with memristive response, Electrochemistry Communications. 34 (2013) 177-180.

DOI: 10.1016/j.elecom.2013.05.038

Google Scholar

[87] D. Acharyya, A. Hazra and P. Bhattacharyya, Microelectronics Reliability 54, 541-560 (2014).

Google Scholar

[88] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[89] M.M. Rahman, A.J.S. Ahammad, J.H. Jin, S.J. Ahn, J.J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides, Sensors 10 (2010) 4855-4886.

DOI: 10.3390/s100504855

Google Scholar

[90] J.G. Li, T. Ishigaki, X. Sun, Anatase, Brookite, and Rutile nanocrystals via redox reactions under mild hydrothermal conditions:  phase-selective synthesis and physicochemical properties, J. Phys. Chem. C, 111 (2007) 4969-4976.

DOI: 10.1021/jp0673258

Google Scholar

[91] C.Y. Hsiao, C.L. Lee, D.F. Ollis, heterogeneous photocatalysis - degradation of dilute-solutions of dichloromethane (Ch2cl2), chloroform (Chcl3), and carbon-tetrachloride (CCl4) with illuminated TiO2 photocatalyst,J. Catal. 82 (1983) 418-423.

DOI: 10.1016/0021-9517(83)90208-7

Google Scholar

[92] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cynide ion in aqueous solutions at Titanium dioxide powder,J. Am. Chem. Soc. 99 (1977) 303-304.

DOI: 10.1021/ja00443a081

Google Scholar

[93] Y. Li, L. Jia, C. Wu, S. Han, Y. Gong, B. Chia, J. Pu, L. Jian, Mesoporous (N, S)-codoped TiO2 nanoparticles as effective photoanode for dye-sensitized solar cells, J. Alloys Comp. 512 (2012) 23-26.

DOI: 10.1016/j.jallcom.2011.08.072

Google Scholar

[94] N.N. Wei, T. Han, G.Z. Deng, J.L. Li, J.Y. Du, Synthesis and characterizations of three dimensional ordered gold nanoparticle doped titanium dioxide photonic crystals, Thin Solid Films, 519 (2011) 2409-2414.

DOI: 10.1016/j.tsf.2010.11.045

Google Scholar

[95] G. Redmond, D. Fitzmaurice, M. Gratzel, Visible light sensitization by cis-bis (thiocynato) bis (2, 2'- bipyridyl – 4, 4'- dicaboxylato) ruthenium(II) of a transparent nanocrystalline. Chem. Mater. 6 (1994) 686-691.

DOI: 10.1021/cm00041a020

Google Scholar

[96] H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang, and M. Muhammed, High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes, J. Phys. Chem. B 101(1997).

DOI: 10.1021/jp962918b

Google Scholar

[97] T. N. Rao and L. Bahadur, Photoelectrochemical studies on dye-sensitized particulate ZnO thin-film photoelectrodes in non-aqueous media, J. Electrochem. Soc. 144 (1997) 179-185.

DOI: 10.1149/1.1837382

Google Scholar

[98] K. Keis, L. Vayssieres, S. E. Lindquist, A. Hagfeldt, Nanostructured ZnO electrodes for photovoltaic applications, Nanostruct. Mater. 12 (1999) 487-490.

DOI: 10.1016/s0965-9773(99)00165-8

Google Scholar

[99] C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, Electron injection and recombination in Ru(dcbpy)(2)(NCS)(2) sensitized nanostructured ZnO, Journal of Physical Chemistry B 105 (2001) 5585-5588.

DOI: 10.1021/jp004121x

Google Scholar

[100] F. Wang, Z. Ye, D. Ma, L. Zhu, F. Zhuge, Formation of quasi-aligned ZnCdO nanorods and nanoneedles, J. Cryst. Growth 283 (2005) 373-377.

DOI: 10.1016/j.jcrysgro.2005.05.063

Google Scholar

[101] V.A. Fonoberov, K.A. Alim, A.A. Balandin, Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals, Phys. Rev. B 73 (2006) 165317(9).

DOI: 10.1103/physrevb.73.165317

Google Scholar

[102] B.S. Li, Y.C. Liu, Z.Z. Zhi, D.Z. Shen, Y.M. Lu, J.Y. Zhang, X.W. Fan, The photoluminescence of ZnO thin films grown on Si (1 0 0) substrate by plasma-enhanced chemical vapor deposition, J. Cryst. Growth 240(2002) 479-483.

DOI: 10.1016/s0022-0248(02)00929-6

Google Scholar

[103] B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis et al., Bound exciton and donor-acceptor pair recombination in ZnO. Phys. Stat. Sol., 241 (2004) 231-260.

DOI: 10.1002/pssb.200301962

Google Scholar

[104] T. Ren, H.R. Baker, K.M. Poduska, Optical absorption edge shifts in electrodeposited ZnO thin films. " Thin Solid Films 515 (2007) 7976-7983.

DOI: 10.1016/j.tsf.2007.03.185

Google Scholar

[105] Z.L. Wang, Zinc Oxide Nanostructures: Growth, Properties and Applications, J. Phys. Condens. Matter 16 (2004) 829-858.

Google Scholar

[106] Y. Ding, Z.L. Wang, Structures of planar defects in ZnO nanobelts and nanowires, Micron, 40 (2009) 335-342.

DOI: 10.1016/j.micron.2008.10.008

Google Scholar

[107] G.H. Lee, Y. Yamamoto, M. Kourogia, M. Ohtsua, Blue shift in room temperature photoluminescence from photo-chemical vapor deposited ZnO films, Thin Solid Films 386 (2001) 117-120.

DOI: 10.1016/s0040-6090(01)00764-7

Google Scholar

[108] M. Risti, S. Music, M. Ivanda, S. Popovic, Sol–gel synthesis and characterization of nanocrystalline ZnO powders, J. Alloys Comp. 397 (2005) L1-L4.

DOI: 10.1016/j.jallcom.2005.01.045

Google Scholar

[109] S.S. Pareek, K. Pareek, An Empirical Study on Structural, Optical and Electronic Properties of ZnO Nanoparticles, IOSR-JAP. 3 (2013) 16-24.

DOI: 10.9790/4861-0321624

Google Scholar

[110] E. Gale, R. Mayne, A. Adamatzky, B.L. Costello, Drop-coated titanium dioxide memristors, Mater. Chem. Phys. 143 (2014) 524-529.

DOI: 10.1016/j.matchemphys.2013.09.013

Google Scholar

[111] A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Sidmer, Reproducible switching effect in thin oxide films for memory applications, Appl. Phys. Lett. 77 (2000) 139-141.

DOI: 10.1063/1.126902

Google Scholar

[112] J.E. Yoo, K. Lee, A. Tighineanu and P. Schmuki, Highly ordered TiO2 nanotube-stumps with memristive response, Electrochemistry Communications 34 (2013) 177-180.

DOI: 10.1016/j.elecom.2013.05.038

Google Scholar

[113] D.J. Kim, H. Lu, S. Ryu, S. Lee, C.W. Bark, C.B. Eom, A. Gruverman, Retention of resistance states in ferroelectric tunnel memristors, Appl. Phys. Lett. 103 (2013)142908 (1-4).

DOI: 10.1063/1.4823989

Google Scholar