Structural Behaviour of Solid Solution in the SmAlO3−TbAlO3 System

Article Preview

Abstract:

Phase and structural behaviour in the SmAlO3–TbAlO3 system has been studied in a whole concentration range by means of laboratory X-ray diffraction, in situ high temperature synchrotron powder diffraction and differential thermal analysis. Formation of the continuous solid solution Sm1xTbxAlO3 with the orthorhombic perovskite structure (space group Pbnm) has been established. Peculiarity of the investigated system is lattice parameter crossovers resulted in the existence of three regions with different relations of the lattice parameters. Based on the results obtained, as well as an available literature data for the “pure” SmAlO3 and TbAlO3, a phase diagram of the pseudo-binary SmAlO3–TbAlO3 system has been constructed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 230)

Pages:

39-44

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Vasylechko, N. Ohon, Yu. Prots, S. Hoffmann, S. Ubizskii, Lattice crossover and phase transitions in NdAlO3–GdAlO3 system, J. Solid State Chem. 198 (2013) 101–107.

DOI: 10.1016/j.jssc.2012.09.036

Google Scholar

[2] C. -L. Huang, Y. -C. Chen, Low temperature sintering and microwave dielectric properties of SmAlO3 ceramics, Mater. Res. Bull. 37 (2002) 563–574.

DOI: 10.1016/s0025-5408(02)00677-3

Google Scholar

[3] S.Y. Cho, I.T. Kim, K.S. Hong, Microwave dielectric properties and applications of rare-earth aluminates, J. Mater. Res. Bull. 14 (1999) 114–119.

DOI: 10.1557/jmr.1999.0018

Google Scholar

[4] K.K. Bamzai, Vishal Singh, Nidhi, P.N. Kotru, B.M. Wanklyn, Micromechanical characteristics of flux-grown SmAlO3 single crystal, Strength Mater. 42 (2010) 387–396.

DOI: 10.1007/s11223-010-9228-y

Google Scholar

[5] A.P. Sakhya, A. Dutta, T.P. Sinha, Dielectric relaxation of samarium aluminate, J. Appl. Phys. A 114 (2014) 1097-1104.

DOI: 10.1007/s00339-013-7766-4

Google Scholar

[6] F. -H. Chen, T. -M. Pan. Structural and electrical properties of a high-k SmAlO3 charge trapping flash memory, J. Phys. Chem. Solids 73 (2012) 793–796.

DOI: 10.1016/j.jpcs.2012.01.027

Google Scholar

[7] J.B. Gruber, K.L. Nash, R.M. Yow, D.K. Sardar, U.V. Valiev, A.A. Uzokov, G.W. Burdick, Spectroscopic and magnetic susceptibility analyses of the 7FJ and 5D4 energy levels of Tb3+(4f8) in TbAlO3, J. Luminesc. 128 (2008) 1271–1204.

DOI: 10.1016/j.jlumin.2007.12.041

Google Scholar

[8] L. Vasylechko, A. Senyshyn, U. Bismayer, Perovskite-type aluminates and gallates, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, Jr., J. -C. G. Bünzli and V. K. Pecharsky, eds., North-Holland: Netherlands, 2009, vol. 39, pp.113-295.

DOI: 10.1016/s0168-1273(08)00002-0

Google Scholar

[9] N. Ohon, L. Vasylechko, Yu. Prots, M. Schmidt, Phase and structural behavior in the SmAlO3–RAlO3 (R = Eu, Gd) systems, Mater. Res. Bull. 50C (2014) 509–513.

DOI: 10.1016/j.materresbull.2013.11.048

Google Scholar

[10] N. Ohon, L. Vasylechko, Yu. Prots, M. Schmidt, C. Curfs, Phase and structural behaviour in the NdAlO3–EuAlO3 system, Solid State Phenomena 200 (2013) 93–99.

DOI: 10.4028/www.scientific.net/ssp.200.93

Google Scholar

[11] N. Ohon, L. Vasylechko, Yu. Prots, M. Schmidt, Phase and Structural Behaviour in the SmAlO3-TbAlO3 system, Intern. Conf. Oxide Materials for Electronic Engineering (OMEE-2014), May 26-30, 2014, Lviv, Ukraine. Book of Conference Proceedings, P. 45–46. IEEE Conference publications, DOI: 10. 1109/OMEE. 2014. 6912332.

DOI: 10.1109/omee.2014.6912332

Google Scholar

[12] M. Knapp, V. Joco, C. Baehtz, H.H. Brecht, A. Berghaeuser, H. Ehrenberg, H. von Seggern, H. Fuess, Position-sensitive detector system OBI for high resolution X-ray powder diffraction using on-site readable image plates, Nucl. Instrum. Methods A, 521 (2004).

DOI: 10.1016/j.nima.2003.10.100

Google Scholar

[13] C. Baehtz, H. Ehrenberg, H. Fuess, The synchrotron powder diffractometer at beamline B2 at HASYLAB/DESY: status and capabilities, J. Synchrotron Rad. 11 (2004) 328–334.

DOI: 10.1107/s0909049504009367

Google Scholar

[14] L. Akselrud, Yu. Grin. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 47 (2014) 803–805.

DOI: 10.1107/s1600576714001058

Google Scholar

[15] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751–757.

DOI: 10.1107/s0567739476001551

Google Scholar

[16] L. Vasylechko, A. Matkovski, A. Suchocki, D. Savytskii, I. Syvorotka, Crystal structure of LaGaO3 and (La, Gd)GaO3 solid solutions, J. Alloys Compd. 286 (1999) 213-218.

DOI: 10.1016/s0925-8388(98)01009-3

Google Scholar

[17] L. Vasylechko, M. Berkowski, A. Matkovskii, W. Piekarczyk, D. Savytskii, Structure peculiarities of the La1-xNdxGaO3 solid solutions, J. Alloys Compd. 300-301 (2000) 471-474.

DOI: 10.1016/s0925-8388(99)00700-8

Google Scholar

[18] M. Berkowski, J. Fink-Finowicki, P. Byszewski, R. Diduszko, E. Kowalska, R. Aleksijko, W. Piekarczyk, L.O. Vasylechko, D.I. Savytskij, L. Perchuć, J. Kapuśniak, Czochralski growth and structural investigations of La1-xPrxGaO3 solid solution single crystals, J. Crystal Growth, 222 (2001).

DOI: 10.1016/s0022-0248(00)00916-7

Google Scholar

[19] L. Vasylechko, R. Niewa, H. Borrmann, M. Knapp, D. Savytskii, A. Matkovski, U. Bismayer, M. Berkowski, R-3c–Pbnm phase transition of La1-xSmxGaO3 (0£x£0. 3) perovskites and crystal structures of the orthorhombic and trigonal phases, Solid State Ionics 143 (2001).

DOI: 10.1016/s0167-2738(01)00857-8

Google Scholar

[20] R. Shukla, J. Manjanna, A.K. Bera, S.M. Yusuf, A.K. Tyagi, La1-xCexCrO3 (0. 0£x£1. 0): a new series of solid solutions with tunable magnetic and optical properties, Inorg. Chem. 48 (2009) 11691-11696.

DOI: 10.1021/ic901735d

Google Scholar

[21] L. Vasylechko, T. Basyuk, V. Vashook, S. Hoffmann, D. Trots, High-temperature behaviour of new mixed chromites La1-xRxCrO3 (R = Pr, Nd, Sm, Eu), HASYLAB Annual Report, 2010. http: /hasylab. desy. de/annual_report/files/2010/20101175. pdf.

Google Scholar

[22] S.V. Kurgan, G.S. Petrov, L.A. Bashkirov, A.I. Klyndyuk, Properties of Nd1-xGdxCoO3 solid solutions, Inorg. Mater. 40 (2004) 1224–1228.

DOI: 10.1023/b:inma.0000048227.83354.3c

Google Scholar

[23] L. Vasylechko, O. Myakush, Yu. Prots, A. Senyshyn, Mixed cobaltites R1-xR`xCoO3 (R = La, Pr, Nd, Sm): formation of solid solutions, HASYLAB Annual Report, 2010. http: /hasylab. desy. de/annual_report/files/2010/20101085. pdf.

Google Scholar

[24] V. Vashook, L. Vasylechko, N. Trofimenko, M. Kuznecov, P. Otchik, J. Zosel, U. Guth, A-site deficient perovskite-type compounds in the ternary CaTiO3-LaCrO3-La2/3TiO3 system, J. Alloys Compd. 419 (2006) 271–280.

DOI: 10.1016/j.jallcom.2005.09.063

Google Scholar

[25] R.J. Bouchard, J.F. Weiher, LaxSr1-xRuO3: A new perovskite series, J. Solid State Chem. 4 (1972) 80-86.

DOI: 10.1016/0022-4596(72)90135-1

Google Scholar

[26] O. Kharko, L. Vasylechko, Structural behaviour of solid solutions in the PrCoO3-PrFeO3 system, Visnyk Lviv Polytechnic Natl. University. Electronics 734 (2012) 119-126.

Google Scholar