[1]
L. Vasylechko, N. Ohon, Yu. Prots, S. Hoffmann, S. Ubizskii, Lattice crossover and phase transitions in NdAlO3–GdAlO3 system, J. Solid State Chem. 198 (2013) 101–107.
DOI: 10.1016/j.jssc.2012.09.036
Google Scholar
[2]
C. -L. Huang, Y. -C. Chen, Low temperature sintering and microwave dielectric properties of SmAlO3 ceramics, Mater. Res. Bull. 37 (2002) 563–574.
DOI: 10.1016/s0025-5408(02)00677-3
Google Scholar
[3]
S.Y. Cho, I.T. Kim, K.S. Hong, Microwave dielectric properties and applications of rare-earth aluminates, J. Mater. Res. Bull. 14 (1999) 114–119.
DOI: 10.1557/jmr.1999.0018
Google Scholar
[4]
K.K. Bamzai, Vishal Singh, Nidhi, P.N. Kotru, B.M. Wanklyn, Micromechanical characteristics of flux-grown SmAlO3 single crystal, Strength Mater. 42 (2010) 387–396.
DOI: 10.1007/s11223-010-9228-y
Google Scholar
[5]
A.P. Sakhya, A. Dutta, T.P. Sinha, Dielectric relaxation of samarium aluminate, J. Appl. Phys. A 114 (2014) 1097-1104.
DOI: 10.1007/s00339-013-7766-4
Google Scholar
[6]
F. -H. Chen, T. -M. Pan. Structural and electrical properties of a high-k SmAlO3 charge trapping flash memory, J. Phys. Chem. Solids 73 (2012) 793–796.
DOI: 10.1016/j.jpcs.2012.01.027
Google Scholar
[7]
J.B. Gruber, K.L. Nash, R.M. Yow, D.K. Sardar, U.V. Valiev, A.A. Uzokov, G.W. Burdick, Spectroscopic and magnetic susceptibility analyses of the 7FJ and 5D4 energy levels of Tb3+(4f8) in TbAlO3, J. Luminesc. 128 (2008) 1271–1204.
DOI: 10.1016/j.jlumin.2007.12.041
Google Scholar
[8]
L. Vasylechko, A. Senyshyn, U. Bismayer, Perovskite-type aluminates and gallates, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, Jr., J. -C. G. Bünzli and V. K. Pecharsky, eds., North-Holland: Netherlands, 2009, vol. 39, pp.113-295.
DOI: 10.1016/s0168-1273(08)00002-0
Google Scholar
[9]
N. Ohon, L. Vasylechko, Yu. Prots, M. Schmidt, Phase and structural behavior in the SmAlO3–RAlO3 (R = Eu, Gd) systems, Mater. Res. Bull. 50C (2014) 509–513.
DOI: 10.1016/j.materresbull.2013.11.048
Google Scholar
[10]
N. Ohon, L. Vasylechko, Yu. Prots, M. Schmidt, C. Curfs, Phase and structural behaviour in the NdAlO3–EuAlO3 system, Solid State Phenomena 200 (2013) 93–99.
DOI: 10.4028/www.scientific.net/ssp.200.93
Google Scholar
[11]
N. Ohon, L. Vasylechko, Yu. Prots, M. Schmidt, Phase and Structural Behaviour in the SmAlO3-TbAlO3 system, Intern. Conf. Oxide Materials for Electronic Engineering (OMEE-2014), May 26-30, 2014, Lviv, Ukraine. Book of Conference Proceedings, P. 45–46. IEEE Conference publications, DOI: 10. 1109/OMEE. 2014. 6912332.
DOI: 10.1109/omee.2014.6912332
Google Scholar
[12]
M. Knapp, V. Joco, C. Baehtz, H.H. Brecht, A. Berghaeuser, H. Ehrenberg, H. von Seggern, H. Fuess, Position-sensitive detector system OBI for high resolution X-ray powder diffraction using on-site readable image plates, Nucl. Instrum. Methods A, 521 (2004).
DOI: 10.1016/j.nima.2003.10.100
Google Scholar
[13]
C. Baehtz, H. Ehrenberg, H. Fuess, The synchrotron powder diffractometer at beamline B2 at HASYLAB/DESY: status and capabilities, J. Synchrotron Rad. 11 (2004) 328–334.
DOI: 10.1107/s0909049504009367
Google Scholar
[14]
L. Akselrud, Yu. Grin. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 47 (2014) 803–805.
DOI: 10.1107/s1600576714001058
Google Scholar
[15]
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751–757.
DOI: 10.1107/s0567739476001551
Google Scholar
[16]
L. Vasylechko, A. Matkovski, A. Suchocki, D. Savytskii, I. Syvorotka, Crystal structure of LaGaO3 and (La, Gd)GaO3 solid solutions, J. Alloys Compd. 286 (1999) 213-218.
DOI: 10.1016/s0925-8388(98)01009-3
Google Scholar
[17]
L. Vasylechko, M. Berkowski, A. Matkovskii, W. Piekarczyk, D. Savytskii, Structure peculiarities of the La1-xNdxGaO3 solid solutions, J. Alloys Compd. 300-301 (2000) 471-474.
DOI: 10.1016/s0925-8388(99)00700-8
Google Scholar
[18]
M. Berkowski, J. Fink-Finowicki, P. Byszewski, R. Diduszko, E. Kowalska, R. Aleksijko, W. Piekarczyk, L.O. Vasylechko, D.I. Savytskij, L. Perchuć, J. Kapuśniak, Czochralski growth and structural investigations of La1-xPrxGaO3 solid solution single crystals, J. Crystal Growth, 222 (2001).
DOI: 10.1016/s0022-0248(00)00916-7
Google Scholar
[19]
L. Vasylechko, R. Niewa, H. Borrmann, M. Knapp, D. Savytskii, A. Matkovski, U. Bismayer, M. Berkowski, R-3c–Pbnm phase transition of La1-xSmxGaO3 (0£x£0. 3) perovskites and crystal structures of the orthorhombic and trigonal phases, Solid State Ionics 143 (2001).
DOI: 10.1016/s0167-2738(01)00857-8
Google Scholar
[20]
R. Shukla, J. Manjanna, A.K. Bera, S.M. Yusuf, A.K. Tyagi, La1-xCexCrO3 (0. 0£x£1. 0): a new series of solid solutions with tunable magnetic and optical properties, Inorg. Chem. 48 (2009) 11691-11696.
DOI: 10.1021/ic901735d
Google Scholar
[21]
L. Vasylechko, T. Basyuk, V. Vashook, S. Hoffmann, D. Trots, High-temperature behaviour of new mixed chromites La1-xRxCrO3 (R = Pr, Nd, Sm, Eu), HASYLAB Annual Report, 2010. http: /hasylab. desy. de/annual_report/files/2010/20101175. pdf.
Google Scholar
[22]
S.V. Kurgan, G.S. Petrov, L.A. Bashkirov, A.I. Klyndyuk, Properties of Nd1-xGdxCoO3 solid solutions, Inorg. Mater. 40 (2004) 1224–1228.
DOI: 10.1023/b:inma.0000048227.83354.3c
Google Scholar
[23]
L. Vasylechko, O. Myakush, Yu. Prots, A. Senyshyn, Mixed cobaltites R1-xR`xCoO3 (R = La, Pr, Nd, Sm): formation of solid solutions, HASYLAB Annual Report, 2010. http: /hasylab. desy. de/annual_report/files/2010/20101085. pdf.
Google Scholar
[24]
V. Vashook, L. Vasylechko, N. Trofimenko, M. Kuznecov, P. Otchik, J. Zosel, U. Guth, A-site deficient perovskite-type compounds in the ternary CaTiO3-LaCrO3-La2/3TiO3 system, J. Alloys Compd. 419 (2006) 271–280.
DOI: 10.1016/j.jallcom.2005.09.063
Google Scholar
[25]
R.J. Bouchard, J.F. Weiher, LaxSr1-xRuO3: A new perovskite series, J. Solid State Chem. 4 (1972) 80-86.
DOI: 10.1016/0022-4596(72)90135-1
Google Scholar
[26]
O. Kharko, L. Vasylechko, Structural behaviour of solid solutions in the PrCoO3-PrFeO3 system, Visnyk Lviv Polytechnic Natl. University. Electronics 734 (2012) 119-126.
Google Scholar