Application of Pelletron Accelerator to Study High Total Dose Radiation Effects on Semiconductor Devices

Article Preview

Abstract:

Silicon bipolar junction transistors (BJTs), Silicon-germanium heterojunction bipolar transistors (SiGe HBTs) and metal oxide semiconductor (MOS) devices are the key components of BiCMOS integrated circuits. The semiconductor devices need to withstand very high total doses (100’s of Mrad) for reliable operation of electronic circuits for 8-10 years of LHC operation. The study of radiation tolerance of semiconductor devices up to 100 Mrad of total dose takes longer time with conventional 60Co gamma, proton and electron irradiation facilities and the effects due to these radiations are well understood. Hence it is important to study the effects of heavy ion irradiation on various semiconductor devices. The irradiation time decreases with increasing linear energy transfer (LET) of incident radiation and LET increases with atomic number of the impinging ions. But it is essential to understand the mechanism of energy transfer by different heavy ions in semiconductor devices. Therefore, here we give an overview of different heavy ion interactions with Si BJTs, MOSFETs and SiGe HBTs by primarily focusing on the electrical characteristics of these devices before and after ion irradiation. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 239)

Pages:

37-71

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.M. Sze, Semiconductor Devices: Physics and Technology, John Wiley & Sons, (2008).

Google Scholar

[2] J.D. Cressler, SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices CRC Press Inc., (2007).

DOI: 10.1201/9781420066869.ch3

Google Scholar

[3] A. Holmes-Siedle, L. Adams, Handbook of Radiation Effects Oxford University Press, USA, (2002).

Google Scholar

[4] J.D. Cressler, SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications, IEEE Transactions on Microwave Theory and Techniques 46 (1998) 572-589.

DOI: 10.1109/22.668665

Google Scholar

[5] J.D. Cressler, G. Niu, Silicon Germanium Heterojunction Bipolar Transistors, Artech House, Norwood (MA), (2003).

Google Scholar

[6] K.C. Praveen, N. Pushpa, Y.P. Prabakara, G. Govindaraj, J.D. Cressler, A.P.G. Prakash, Application of advanced 200 GHz Si-Ge HBTs for high dose radiation environments, Solid- State Electronics 54 (2010) 1554-1560.

DOI: 10.1016/j.sse.2010.08.003

Google Scholar

[7] K.C. Praveen, N. Pushpa, A. Tripathi, D. Revannasiddaiah, J.D. Cressler, A.P.G. Prakash, 50 MeV Li3+ ion irradiation effects on advanced 200 GHz SiGe HBTs, Radiation Effects and Defects in Solids 166 (2011) 710-717.

DOI: 10.1080/10420150.2011.578632

Google Scholar

[8] F. Campabadal, C. Fleta, M. Key, M. Lozano, C. Martinez, G. Pellegrini, J.M. Rafi, M. Ullan, Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 552 (2005).

DOI: 10.1016/j.nima.2005.06.002

Google Scholar

[9] A.P.G. Prakash, P. Ganesh, Y. Nagesha, D. Umakanth, S. Arora, K. Siddappa, Effect of 30 Mev Li 3+ ion and 8 MeV electron irradiation on n-channel MOSFETs, Radiation Effects and Defects in Solids 157 (2002) 323-331.

DOI: 10.1080/10420150213002

Google Scholar

[10] A.P.G. Prakash, S. Ke, K. Siddappa, High-energy radiation effects on subthreshold characteristics, transconductance and mobility of n-channel MOSFETs, Semiconductor Science and Technology 18 (2003) 1037.

DOI: 10.1088/0268-1242/18/12/307

Google Scholar

[11] A.P.G. Prakash, J.D. Cressler, The effect of 63 MeV hydrogen ion irradiation on 65 GHz UHV/CVD SiGe HBT BiCMOS technology, Radiation Effects and Defects in Solids 166 (2011) 703-709.

DOI: 10.1080/10420150.2011.578631

Google Scholar

[12] A.P.G. Prakash, N. Pushpa, K. Praveen, P. Naik, D. Revannasiddaiah, Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices, in: AIP Conference Proceedings, 2012, p.489.

DOI: 10.1063/1.4710092

Google Scholar

[13] J.D. Cressler, On the potential of SiGeHBTs for extreme environment electronics, Proceedings of the IEEE 93 (2005) 1559-1582.

Google Scholar

[14] N. Pushpa, K. Praveen, A.P.G. Prakash, S. Gupta, D. Revannasiddaiah, An Analysis of 175 MeV Nickel ion irradiation and annealing effects on silicon NPN rf power transistors, Current Applied Physics 13(2013) 66-75.

DOI: 10.1016/j.cap.2012.06.011

Google Scholar

[15] A.P.G. Prakash, J.D. Cressler, S. Ke, K. Siddappa, Impact of high energy radiation effects on N-channel MOSFETs, Indian J. Phys. 78 (2004) 1187-1192.

Google Scholar

[16] N. Pushpa, K.C. Praveen, A.P.G. Prakash, Y.P. Prabhakara Rao, A. Tripati, D. Revannasiddaiah, An analysis of 100MeV F8+ ion and 50MeV Li3+ ion irradiation effects on silicon NPN rf power transistors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 620 (2010).

DOI: 10.1016/j.nima.2010.02.272

Google Scholar

[17] N. Pushpa, K.C. Praveen, A.P.G. Prakash, P.S. Naik, J.D. Cressler, S.K. Gupta, D. Revannasiddaiah, Reliability studies on NPN RF power transistors under swift heavy ion irradiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 273 (2012).

DOI: 10.1016/j.nimb.2011.07.032

Google Scholar

[18] J. Srour, C.J. Marshall, P.W. Marshall, Review of displacement damage effects in silicon devices, IEEE Transactions on Nuclear Science 50 (2003) 653-670.

DOI: 10.1109/tns.2003.813197

Google Scholar

[19] G. Bonfiglioli, A. Ferro, A. Mojoni, Electron microscope investigation on the nature of tracks of fission products in mica, Journal of Applied Physics 32 (1961) 2499-2503.

DOI: 10.1063/1.1728339

Google Scholar

[20] A. Meftah, F. Brisard, J.M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J.P. Stoquert, F. Studer, M. Toulemonde, Track formation in SiO2 quartz and the thermal-spike mechanism, Physical Review B 49 (1994) 12457-12463.

DOI: 10.1103/physrevb.49.12457

Google Scholar

[21] R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications, University of California Press, (1975).

Google Scholar

[22] R.L. Fleischer, Ion Tracks in Solids: From Science to Technology to Diverse Applications, MRS Bulletin-Materials Research Society 20 (1995) 17-21.

DOI: 10.1557/s0883769400045851

Google Scholar

[23] R. Weeks, Paramagnetic resonance of lattice defects in irradiated quartz, Journal of Applied Physics 27 (1956) 1376-1381.

DOI: 10.1063/1.1722267

Google Scholar

[24] E. Holzenkämpfer, F. -W. Richter, J. Stuke, U. Voget-Grote, Electron spin resonance and hopping conductivity of a-SiOx, Journal of Non-Crystalline Solids 32 (1979) 327-338.

DOI: 10.1016/0022-3093(79)90080-2

Google Scholar

[25] A.P.G. Prakash, S.C. Ke, K. Siddappa, Swift heavy-ion irradiation effects on electrical and defect properties of NPN transistors, Semiconductor Science and Technology 19 (2004) 1029-1039.

DOI: 10.1088/0268-1242/19/8/014

Google Scholar

[26] A.P. G. Prakash, S.C. Ke, K. Siddappa, I–V and deep level transient spectroscopy studies on 60 MeV oxygen ion irradiated NPN transistors, Nuclear Instruments and Methods in Physics Research Section B 215 (2004) 457-470.

DOI: 10.1016/j.nimb.2003.09.015

Google Scholar

[27] N. Pushpa, A.P.G. Prakash, K.C. Praveen, J.D. Cressler, D. Revannasiddaiah, An investigation of electron and oxygen ion damage in Si npn RF power transistors, Radiation Effects & Defects in Solids 164 (2009) 592-603.

DOI: 10.1080/10420150903173288

Google Scholar

[28] J. Biersack, L. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nuclear Instruments and Methods 174 (1980) 257-269.

DOI: 10.1016/0029-554x(80)90440-1

Google Scholar

[29] K. Madhu, S. Kulkarni, M. Ravindra, R. Damle, DLTS study of deep level defects in Li-ion irradiated bipolar junction transistor, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 254 (2007).

DOI: 10.1016/j.nimb.2006.10.063

Google Scholar

[30] K. Praveen, N. Pushpa, J. Cressler, A.P.G. Prakash, Analysis of high energy ion, proton and Co-60 gamma radiation induced damage in davanced 200 GHz SiGe HBTs, International Journal of Nano-Electronics and Physics 3 (2011) 348-357.

Google Scholar

[31] M.G. Pecht, R. Radjojcic, G.K. Rao, Guidebook for managing silicon chip reliability, CRC Press, (1999).

Google Scholar

[32] A.P.G. Prakash, A.K. Sutton, R.M. Diestelhorst, G. Espinel, J. Andrews, B. Jun, J.D. Cressler, P.W. Marshall, C.J. Marshall, The effects of irradiation temperature on the proton response of SiGe HBTs, IEEE Transactions on Nuclear Science 53 (2006).

DOI: 10.1109/tns.2006.886229

Google Scholar

[33] K.C. Praveen, N. Pushpa, P.S. Naik, J.D. Cressler, A. Tripathi, A.P.G. Prakash, Application of a Pelletron accelerator to study total dose radiation effects on 50 GHz SiGe HBTs, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 273 (2012).

DOI: 10.1016/j.nimb.2011.07.034

Google Scholar

[34] B.M. Haugerud, M.M. Pratapgarhwala, J.P. Comeau, A.K. Sutton, A.P.G. Prakash, J.D. Cressler, P.W. Marshall, C.J. Marshall, R.L. Ladbury, M. El-Diwany, C. Mitchell, L. Rockett, T. Bach, R. Lawrence, N. Haddad, Proton and gamma radiation effects in a new first-generation SiGe HBT technology, Solid-State Electronics 50 (2006).

DOI: 10.1016/j.sse.2005.11.007

Google Scholar

[35] A.K. Sutton, A.P.G. Prakash, B.G. Jun, E.H. Zhao, M. Bellini, J. Pellish, R.M. Diestelhorst, M.A. Carts, A. Phan, R. Ladbury, J.D. Cressler, P.W. Marshall, C.J. Marshall, R.A. Reed, R.D. Schrimpf, D.M. Fleetwood, An investigation of dose rate and source dependent effects in 200 GHz SiGe HBTs, IEEE Transactions on Nuclear Science 53 (2006).

DOI: 10.1109/tns.2006.885382

Google Scholar

[36] N.S. Saks, M. Simons, D.M. Fleetwood, J.T. Yount, P.M. Lenahan, R.B. Klein, Radiation effects in oxynitrides grown in N2O, IEEE Transactions on Nuclear Science, 41 (1994) 1854-1863.

DOI: 10.1109/23.340517

Google Scholar

[37] K.C. Praveen, N. Pushpa, P.S. Naik, J.D. Cressler, H.B. Shiva, S. Verma, A. Tripathi, A.P.G. Prakash, In-Situ Investigation of 75 MeV Boron and 100 MeV Oxygen Ion Irradiation Effects on 50 GHz SiGe HBTs, Radiation Effects and Defects in Solids 168 (2013).

DOI: 10.1080/10420150.2013.787073

Google Scholar

[38] A.P.G. Prakash, J.D. Cressler, The effect of 63 MeV hydrogen ion irradiation on 65 GHz UHV/CVD SiGe HBT BiCMOS technology, Radiation Effects and Defects in Solids 166 (2011) 703-709.

DOI: 10.1080/10420150.2011.578631

Google Scholar

[39] J. Metcalfe, D.E. Dorfan, A.A. Grillo, A. Jones, F. Martinez-McKinney, P. Mekhedjian, M. Mendoza, H.F.W. Sadrozinski, G. Saffier-Ewing, A. Seiden, E. Spencer, M. Wilder, R. Hackenburg, J. Kierstead, S. Rescia, J.D. Cressler, G. Prakash, A. Sutton, Evaluation of the radiation tolerance of several generations of SiGe heterojunction bipolar transistors under radiation exposure, Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment 579 (2007).

DOI: 10.1016/j.nima.2007.05.328

Google Scholar

[40] A.K. Sutton, B.M. Haugerud, A.P.G. Prakash, B. Jun, J.D. Cressler, C.J. Marshall, P.W. Marshall, R. Ladbury, F. Guarin, A.J. Joseph, A comparison of gamma and proton radiation effects in 200 GHz SiGeHBTs, IEEE Transactions on Nuclear Science 52 (2005).

DOI: 10.1109/tns.2005.860728

Google Scholar

[41] N. Pushpa, K. Praveen, A.P.G. Prakash, P. Naik, A. Tripathi, S. Gupta, D. Revannasiddaiah, The effect of swift heavy ion irradiation on threshold voltage, transconductance and mobility of DMOSFETs, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 273 (2012).

DOI: 10.1016/j.nimb.2011.07.033

Google Scholar

[42] T. Oldham, J. McGarrity, Ionization of SiO2 by heavy charged particles, IEEE Transactions on Nuclear Science 28(6) (1981) 3975-3980.

DOI: 10.1109/tns.1981.4335658

Google Scholar

[43] A.P.G. Prakash, J.D. Cressler, S.C. Ke, K. Siddappa, Impact of high energy radiation effects on N-channel MOSFETs, Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science 78 (2004) 1187-1192.

Google Scholar

[44] M. Pejović, G. Ristić, Creation and passivation of interface traps in irradiated MOS transistors during annealing at different temperatures, Solid-State Electronics 41 (1997) 715-720.

DOI: 10.1016/s0038-1101(96)00252-3

Google Scholar

[45] N. Pushpa, K. Praveen, A.P.G. Prakash, Y. Prabhakara Rao, A. Tripati, G. Govindaraj, D. Revannasiddaiah, A comparison of 48MeV Li3+ ion, 100MeV F8+ ion and Co-60 gamma irradiation effect on N-channel MOSFETs, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 613 (2010).

DOI: 10.1016/j.nima.2009.12.015

Google Scholar

[46] B.G. Jun, R.M. Diestelhorst, M. Bellini, G. Espinel, A. Appaswamy, A.P.G. Prakash, J.D. Cressler, D.K. Chen, R.D. Schrimpf, D.M. Fleetwood, M. Turowski, A. Raman, Temperature-dependence of off-state drain leakage in X-ray irradiated 130 nm CMOS devices, IEEE Transactions on Nuclear Science 53 (2006).

DOI: 10.1109/tns.2006.886230

Google Scholar

[47] E. Enlow, R. Pease, W. Combs, Ron D. Schrimpf, R. Nathan Nowlin, Response of advanced bipolar processes to ionizing radiation, IEEE Transactions on Nuclear Science 38 (1991) 1342-1351.

DOI: 10.1109/23.124115

Google Scholar

[48] N. Pushpa, K.C. Praveen, A.P.G. Prakash, P.S. Naik, J.D. Cressler, S.K. Gupta, D. Revannasiddaiah, Reliability studies on NPN RF power transistors under swift heavy ion irradiation, Nucl. Instrum. Meth. Phys. Res. B 273 (2012) 36-39.

DOI: 10.1016/j.nimb.2011.07.032

Google Scholar