[1]
S. Ramakrishna, J. Mayer, E. Wintermantel and K.W. Leong, Biomedical applications of polymer-composite materials: A review, Composites Science and Technology, 61 (2001) 1189-1224.
DOI: 10.1016/s0266-3538(00)00241-4
Google Scholar
[2]
R.S. Costic, R. Jari, M.W. Rodosky, E. Debski, Joint compression alters the kinematics and loading patterns of the intact and capsule-transected AC joint, J. Orth. Res. 21 (2003) 379-385.
DOI: 10.1016/s0736-0266(02)00197-3
Google Scholar
[3]
S.M. Kurtz, O.K. Muratoglu, M. Evans, A.A. Edidin, Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty, Biomaterials 20 (1999) 1659-1688.
DOI: 10.1016/s0142-9612(99)00053-8
Google Scholar
[4]
H. Dong, T. Bell, State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties, Surf. Coat. Technol. 111 (1999) 29-40.
DOI: 10.1016/s0257-8972(98)00698-7
Google Scholar
[5]
K. L. Johnson, Contact Mechanics, Cambridge Univ. Press, Cambridge (UK), (1985).
Google Scholar
[6]
A. M. Abdul-Kader, A. Turos, J. Jagielski, L. Nowicki, R. Ratajczak, A. Stonert, M. Al-Ma'adeed, Hydrogen release in UHMWPE upon He-ion bombardment, Vacuum 78 (2005) 281-284.
DOI: 10.1016/j.vacuum.2005.01.039
Google Scholar
[7]
A. Valenzaa, A. M. Visco, L. Torrisi, N. Campo, Characterization of ultra-high-molecular- weight polyethylene (UHMWPE) modified by ion implantation, Polymer 45 (2004) 1707–1715.
DOI: 10.1016/j.polymer.2003.12.056
Google Scholar
[8]
R. L. Clough, High-energy radiation and polymers: A review of commercial processes and emerging applications, Nucl. Instr. Meth. B185 (2001) 8-33.
Google Scholar
[9]
J. Hazarik, C. Nath, A. Kumar, 160 MeV Ni12+ ion irradiation effects on the dielectric properties of polyaniline nanotubes, Nucl. Instr. Meth. B 288 (2012) 74-80.
Google Scholar
[10]
A. M. Abdul-Kader, Photoluminescence and optical properties of He ion bombarded ultra-high molecular weight polyethylene, Applied Surface Science 255 (2009) 5016-5020.
DOI: 10.1016/j.apsusc.2008.12.057
Google Scholar
[11]
Siddhartha, S. Arya, Kapil Dev, S. K. Raghuvanshi, J.B.M. Krishna, M.A. Wahab, Effect of gamma radiation on the structural and optical properties of Polyethyleneterphthalate (PET) polymer, Radiat. Phys. Chem. 81 (2012) 458-462.
DOI: 10.1016/j.radphyschem.2011.12.023
Google Scholar
[12]
V. Kumar, R.G. Sonkawade, S.K. Chakarvarti, P. Singh, A.S. Dhaliwal, Carbon ion beam induced modifications of optical, structural and chemical properties in PADC and PET polymers, Radiat. Phys. Chem. 81(2012) 652-658.
DOI: 10.1016/j.radphyschem.2012.02.027
Google Scholar
[13]
M. Šiljegović, Z.M. Kačarević-Popović, N. Bibić, Z.M. Jovanović, S. Maletić, M. Stchakovsky, A.N. Krklješ, Optical and dielectric properties of fluorinated ethylene propylene and tetrafluoroethylene–perfluoro(alkoxy vinyl ether) copolymer films modified by low energy N4+ and C4+ ion beams, Radiat. Phys. Chem. 80 (2011).
DOI: 10.1016/j.radphyschem.2011.08.012
Google Scholar
[14]
A. Abdel Moez, S.S. Aly, Y.H. Elshaer, Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93 (2012) 203-207.
DOI: 10.1016/j.saa.2012.02.031
Google Scholar
[15]
A. Qureshi, Dolly Singh, N.L. Singh, S. Ataoglu, A. N. Gulluoglu, A. Tripathi, D.K. Avasthi, Effect of irradiation by 140 MeV Ag11+ ions on the optical and electrical properties of polypropylene/TiO2 composite, Nucl. Instr. Meth. B 267 (2009).
DOI: 10.1016/j.nimb.2009.07.016
Google Scholar
[16]
R. Verma, R. Dhar, M.C. Rath, S.K. Sarkar, R. Dabrowski, Electron beam irradiation induced changes in the dielectric and electro-optical properties of a room temperature nematic display material 4-(trans-4'-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT), J. Phys. and Chemistry of Solids, 73 (2012).
DOI: 10.1016/j.jpcs.2011.10.026
Google Scholar
[17]
R. M. Radwan, Y.H.A. Fawzy, A. El-Hag Ali, Electrical behaviour of butyl acrylate/methyl methacrylate copolymer films irradiated with 1. 5 MeV electron beam, Radiat. Phys. Chem. 77 (2008) 179-185.
DOI: 10.1016/j.radphyschem.2007.05.011
Google Scholar
[18]
M. Zenkiewicz, M. Kurcok, Effects of compatibilizers and electron radiation on thermo-mechanical properties of composites consisting of five recycled polymers, Polymer Testing 27 (2008) 420-427.
DOI: 10.1016/j.polymertesting.2008.01.002
Google Scholar
[19]
L. Rosu, C. N. Cascaval, D. Rosu, Effect of UV radiation on some polymeric networks based on vinyl ester resin and modified lignin, Polymer Testing 28 (2009) 296-300.
DOI: 10.1016/j.polymertesting.2009.01.004
Google Scholar
[20]
Chr. Lehmann, Interaction of radiation with solids and Elementary Defect production', North Holland Press, Amsterdam (1977).
Google Scholar
[21]
A. Chapiro, Radiation Chemistry of polymeric system, Interscience Publishers, London, (1962) 354.
Google Scholar
[22]
E. H. Lee, Ion-beam modification of polymeric materials-fundamental principles and applications, Nucl. Instr. and Meth. B, 151 (1999) 29-41.
Google Scholar
[23]
J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Solids, Vol. 1, Pergamon Press, New York, (1985).
Google Scholar
[24]
D. Bieliński, P. Lipiński, L. Ślusarski, J. Grams, T. Paryjczak, J. Jagielski, A. Turos, N. K. Madi, Surface layer modifications of ion bombardment HDPE, Surf. Sci., 564 (2004) 179-186.
DOI: 10.1016/j.susc.2004.06.196
Google Scholar
[25]
M. E. Adel, O. Amir, R. Kalish, L. C. Feldman, Ion-beam induced hydrogen release from a-C: H: a bulk molecular recombination model, J. Appl. Phys 66 (1989) 3248-3251.
DOI: 10.1063/1.344116
Google Scholar
[26]
J. Mallegol, D. J. Carlsson, L. Deschenes, Post-γ-irradiation reactions in vitamin E stabilised and unstabilised HDPE, Nucl. Instrum. Meth. B185, (1-4) (2001) 283-293.
Google Scholar
[27]
L. Costa, M.P. Luda, L. Trossarelli, E.M. Brach del Prever, M. Crova, P. Gallinaro, Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide, Biomaterials 19, (1998) 659–668.
DOI: 10.1016/s0142-9612(97)00160-9
Google Scholar
[28]
L. R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra, Nucl. Inst. Methods B9, (1985) 344-351.
Google Scholar
[29]
E. L. Decker, B. Frank, Y Suo, S. Garoff, Physics of contact angle measurement, Colloids and Surfaces 156 (1999) 177-189.
DOI: 10.1016/s0927-7757(99)00069-2
Google Scholar
[30]
K. Ročková-Hlaváčková, V. Švorčı́k, L. Bačáková, B. Dvořánková, J. Heitz, V. Hnatowicz, Bio-compatibility of ion beam-modified and RGD-grafted polyethylene, Nucl. Instr. and Meth. B, 225 (2004) 275-282.
DOI: 10.1016/j.nimb.2004.05.004
Google Scholar
[31]
B. Pignataro, E. Conte, A. Scandurra and G. Marletta, Improved cell adhesion to ion beam-irradiated polymer surfaces, Biomaterials, 18 (1997) 1461-1471.
DOI: 10.1016/s0142-9612(97)00090-2
Google Scholar
[32]
J. Jagielski, A. Piatkowska, P. Aubert, L. Thomé, A. Turos, A. Abdul Kader, Ion implantation for surface modification of biomaterials, Surface & Coating Technology 200 (2006) 6355–6361.
DOI: 10.1016/j.surfcoat.2005.11.005
Google Scholar
[33]
J. C. Pivin, Contribution of ionizations and atomic displacements to the hardening of ion- irradiated polymers, Thin solid films 263 (1995)185-193.
DOI: 10.1016/0040-6090(95)06561-x
Google Scholar