Ion Beam Induced Modifications of Biocompatible Polymer

Article Preview

Abstract:

Ion beam bombardment has shown great potential for improving the surface properties of polymers. In this paper, the ion beam-polymer interaction mechanisms are briefly discussed. The main objective of this research was to study the effects of H-ion beam on physico-chemical properties of Ultra-high-molecular-weight polyethylene (UHMWPE) as it is frequently used in biomedical applications. UHMWPE was bombarded with 65 keV H-ions to fluences ranging from 1x1014–2x1016 ions/cm2. Changes of surface layer composition produced by ion bombardment of UHMWPE samples were studied. The hydrogen release and oxygen uptake induced by ion beam bombardment were determined by Nuclear reaction analysis (NRA) using the 1H(15N, αγ)12C and Rutherford backscattering spectrometry (RBS), respectively. Tribological and hardness properties at the polymer near surface region were studied by means of friction coefficient and micro-hardness testers, respectively. Wettability of the bombarded surfaces was determined by measuring the contact angle for distilled water. The obtained results showed that the ion bombardment induced hydrogen release increases with the increasing ion fluence. An important effect observed, was the rapid oxidation of samples, which occurs after exposure of bombarded samples to air. These effects resulted in important modifications of the surface properties of bombarded material such as change of friction coefficient, hardness and improved wettability.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 239)

Pages:

149-160

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ramakrishna, J. Mayer, E. Wintermantel and K.W. Leong, Biomedical applications of polymer-composite materials: A review, Composites Science and Technology, 61 (2001) 1189-1224.

DOI: 10.1016/s0266-3538(00)00241-4

Google Scholar

[2] R.S. Costic, R. Jari, M.W. Rodosky, E. Debski, Joint compression alters the kinematics and loading patterns of the intact and capsule-transected AC joint, J. Orth. Res. 21 (2003) 379-385.

DOI: 10.1016/s0736-0266(02)00197-3

Google Scholar

[3] S.M. Kurtz, O.K. Muratoglu, M. Evans, A.A. Edidin, Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty, Biomaterials 20 (1999) 1659-1688.

DOI: 10.1016/s0142-9612(99)00053-8

Google Scholar

[4] H. Dong, T. Bell, State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties, Surf. Coat. Technol. 111 (1999) 29-40.

DOI: 10.1016/s0257-8972(98)00698-7

Google Scholar

[5] K. L. Johnson, Contact Mechanics, Cambridge Univ. Press, Cambridge (UK), (1985).

Google Scholar

[6] A. M. Abdul-Kader, A. Turos, J. Jagielski, L. Nowicki, R. Ratajczak, A. Stonert, M. Al-Ma'adeed, Hydrogen release in UHMWPE upon He-ion bombardment, Vacuum 78 (2005) 281-284.

DOI: 10.1016/j.vacuum.2005.01.039

Google Scholar

[7] A. Valenzaa, A. M. Visco, L. Torrisi, N. Campo, Characterization of ultra-high-molecular- weight polyethylene (UHMWPE) modified by ion implantation, Polymer 45 (2004) 1707–1715.

DOI: 10.1016/j.polymer.2003.12.056

Google Scholar

[8] R. L. Clough, High-energy radiation and polymers: A review of commercial processes and emerging applications, Nucl. Instr. Meth. B185 (2001) 8-33.

Google Scholar

[9] J. Hazarik, C. Nath, A. Kumar, 160 MeV Ni12+ ion irradiation effects on the dielectric properties of polyaniline nanotubes, Nucl. Instr. Meth. B 288 (2012) 74-80.

Google Scholar

[10] A. M. Abdul-Kader, Photoluminescence and optical properties of He ion bombarded ultra-high molecular weight polyethylene, Applied Surface Science 255 (2009) 5016-5020.

DOI: 10.1016/j.apsusc.2008.12.057

Google Scholar

[11] Siddhartha, S. Arya, Kapil Dev, S. K. Raghuvanshi, J.B.M. Krishna, M.A. Wahab, Effect of gamma radiation on the structural and optical properties of Polyethyleneterphthalate (PET) polymer, Radiat. Phys. Chem. 81 (2012) 458-462.

DOI: 10.1016/j.radphyschem.2011.12.023

Google Scholar

[12] V. Kumar, R.G. Sonkawade, S.K. Chakarvarti, P. Singh, A.S. Dhaliwal, Carbon ion beam induced modifications of optical, structural and chemical properties in PADC and PET polymers, Radiat. Phys. Chem. 81(2012) 652-658.

DOI: 10.1016/j.radphyschem.2012.02.027

Google Scholar

[13] M. Šiljegović, Z.M. Kačarević-Popović, N. Bibić, Z.M. Jovanović, S. Maletić, M. Stchakovsky, A.N. Krklješ, Optical and dielectric properties of fluorinated ethylene propylene and tetrafluoroethylene–perfluoro(alkoxy vinyl ether) copolymer films modified by low energy N4+ and C4+ ion beams, Radiat. Phys. Chem. 80 (2011).

DOI: 10.1016/j.radphyschem.2011.08.012

Google Scholar

[14] A. Abdel Moez, S.S. Aly, Y.H. Elshaer, Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93 (2012) 203-207.

DOI: 10.1016/j.saa.2012.02.031

Google Scholar

[15] A. Qureshi, Dolly Singh, N.L. Singh, S. Ataoglu, A. N. Gulluoglu, A. Tripathi, D.K. Avasthi, Effect of irradiation by 140 MeV Ag11+ ions on the optical and electrical properties of polypropylene/TiO2 composite, Nucl. Instr. Meth. B 267 (2009).

DOI: 10.1016/j.nimb.2009.07.016

Google Scholar

[16] R. Verma, R. Dhar, M.C. Rath, S.K. Sarkar, R. Dabrowski, Electron beam irradiation induced changes in the dielectric and electro-optical properties of a room temperature nematic display material 4-(trans-4'-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT), J. Phys. and Chemistry of Solids, 73 (2012).

DOI: 10.1016/j.jpcs.2011.10.026

Google Scholar

[17] R. M. Radwan, Y.H.A. Fawzy, A. El-Hag Ali, Electrical behaviour of butyl acrylate/methyl methacrylate copolymer films irradiated with 1. 5 MeV electron beam, Radiat. Phys. Chem. 77 (2008) 179-185.

DOI: 10.1016/j.radphyschem.2007.05.011

Google Scholar

[18] M. Zenkiewicz, M. Kurcok, Effects of compatibilizers and electron radiation on thermo-mechanical properties of composites consisting of five recycled polymers, Polymer Testing 27 (2008) 420-427.

DOI: 10.1016/j.polymertesting.2008.01.002

Google Scholar

[19] L. Rosu, C. N. Cascaval, D. Rosu, Effect of UV radiation on some polymeric networks based on vinyl ester resin and modified lignin, Polymer Testing 28 (2009) 296-300.

DOI: 10.1016/j.polymertesting.2009.01.004

Google Scholar

[20] Chr. Lehmann, Interaction of radiation with solids and Elementary Defect production', North Holland Press, Amsterdam (1977).

Google Scholar

[21] A. Chapiro, Radiation Chemistry of polymeric system, Interscience Publishers, London, (1962) 354.

Google Scholar

[22] E. H. Lee, Ion-beam modification of polymeric materials-fundamental principles and applications, Nucl. Instr. and Meth. B, 151 (1999) 29-41.

Google Scholar

[23] J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Solids, Vol. 1, Pergamon Press, New York, (1985).

Google Scholar

[24] D. Bieliński, P. Lipiński, L. Ślusarski, J. Grams, T. Paryjczak, J. Jagielski, A. Turos, N. K. Madi, Surface layer modifications of ion bombardment HDPE, Surf. Sci., 564 (2004) 179-186.

DOI: 10.1016/j.susc.2004.06.196

Google Scholar

[25] M. E. Adel, O. Amir, R. Kalish, L. C. Feldman, Ion-beam induced hydrogen release from a-C: H: a bulk molecular recombination model, J. Appl. Phys 66 (1989) 3248-3251.

DOI: 10.1063/1.344116

Google Scholar

[26] J. Mallegol, D. J. Carlsson, L. Deschenes, Post-γ-irradiation reactions in vitamin E stabilised and unstabilised HDPE, Nucl. Instrum. Meth. B185, (1-4) (2001) 283-293.

Google Scholar

[27] L. Costa, M.P. Luda, L. Trossarelli, E.M. Brach del Prever, M. Crova, P. Gallinaro, Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide, Biomaterials 19, (1998) 659–668.

DOI: 10.1016/s0142-9612(97)00160-9

Google Scholar

[28] L. R. Doolittle, Algorithms for the rapid simulation of Rutherford backscattering spectra, Nucl. Inst. Methods B9, (1985) 344-351.

Google Scholar

[29] E. L. Decker, B. Frank, Y Suo, S. Garoff, Physics of contact angle measurement, Colloids and Surfaces 156 (1999) 177-189.

DOI: 10.1016/s0927-7757(99)00069-2

Google Scholar

[30] K. Ročková-Hlaváčková, V. Švorčı́k, L. Bačáková, B. Dvořánková, J. Heitz, V. Hnatowicz, Bio-compatibility of ion beam-modified and RGD-grafted polyethylene, Nucl. Instr. and Meth. B, 225 (2004) 275-282.

DOI: 10.1016/j.nimb.2004.05.004

Google Scholar

[31] B. Pignataro, E. Conte, A. Scandurra and G. Marletta, Improved cell adhesion to ion beam-irradiated polymer surfaces, Biomaterials, 18 (1997) 1461-1471.

DOI: 10.1016/s0142-9612(97)00090-2

Google Scholar

[32] J. Jagielski, A. Piatkowska, P. Aubert, L. Thomé, A. Turos, A. Abdul Kader, Ion implantation for surface modification of biomaterials, Surface & Coating Technology 200 (2006) 6355–6361.

DOI: 10.1016/j.surfcoat.2005.11.005

Google Scholar

[33] J. C. Pivin, Contribution of ionizations and atomic displacements to the hardening of ion- irradiated polymers, Thin solid films 263 (1995)185-193.

DOI: 10.1016/0040-6090(95)06561-x

Google Scholar