p.1
p.37
p.72
p.98
p.110
p.149
p.161
p.180
p.215
SSNTD Technique in Photo-Neutron Applications
Abstract:
Passive Solid State Nuclear Track Detectors (SSNTDs) are a versatile tool for neutron studies as has been shown long ago and several good quality materials are commercially available. They are useful for charged particle detection in the linear energy transfer (LET) range above the threshold value of ~10 keV μm-1. Linacs, operating above 6 MeV up to the energy region where radiotherapy is applied usually up to ~25MeV, induce unwanted photo-neutron field; their spectra shows two components due to reaction dynamics based on evaporation and knock-on mechanisms. Neutrons produced by Linacs are often neglected in health application; however, today it has become necessary to assess the effect on patient, staff and radiation workers. Radiation studies using SSNTDs play a major role in this case. Other fields also take advantage of the passive detectors properties; in fact they are employed with success to measure neutron signals relevant for plasma diagnostics as it was demonstrated at the RFX facility as part of the ITER project. The PADC-NTD techniques provide information on external neutron field values around the RFX-installation during pulsed operation. In any case, converter materials, as charged particles from (n, p) and (n, α) reactions, are required to produce neutron fingerprints through latent tracks. These once etched provide information on neutron fluence spatial values. Track histograms are then employed to determine photo-neutron induced damage in materials as well as radiation dose to both patient and professionally exposed workers. The estimated neutron fluence that can be determined by NTM covers a large range of values, the largest being above 1010 (± 12%) neutrons/cm2.
Info:
Periodical:
Pages:
180-214
Citation:
Online since:
August 2015
Authors:
Keywords:
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] L. Sajo Bohus, Ma. M Mackowiak de Antczak, E. D. Greaves, A. Antczak, J. Bermudez, Zs. Kasztovszky, T. Poirier, A. Simonits, Incipient Archaeometry in Venezuela: Provenance study of Pre-hispanic pottery figurines, J. Radioanal. Nucl. Chem. 265 (2005).
[2] H. Barros, L. Sajó-Bohus, Zs. Kasztovszky, H. Postma, P. Vermaercke, P. Schillebeeckx, D. Palacios, E.D. Greaves, M. Mackowiak de Antczak, Neutron methods for Amerindian Archaeological Provenance study and authentication of Etruscan bronze art objects, Proc. 11th Intern. Conf. on Nuclear Reaction Mechanisms, Varenna, Villa Monastero-Italy, June 12 - 16, (2006).
[3] J.K. Pálfalvi, Y. Akatov, J. Szabó, L. Sajó-Bohus, I. Eördögh, Evaluation of solid state nuclear track detector stacks exposed on the International Space Station, Radiat. Prot. Dosim. 110 (2004) 784-788.
DOI: 10.1093/rpd/nch140
[4] R. Verma, M.V. Roshan, F. Malik, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, R.S. Rawat, Compact sub-kilojoule range fast miniature plasma focus as portable neutron source, Plasma Sources Sci. Technol. 17 (2008) 1-11.
[5] A. Malinowska, A. Szydlowski, M.J. Sadowski, J. Zebrowskia, M. Scholz, M. Paduch, M. Jaskola, A. Korman, Measurements of fusion produced protons by means of SSNTDs, Radiat. Meas. 43 (2008) S295-S298.
[6] Viesti G., Donzella A., Bonomi G., Botosso C., Fabris D., Lunardon M., Moretto S., Nebbia G., Pesente S., Pino F., Sajo-Bohus L., Zenoni A. Search of explosives in vehicles using tagged neutrons, NATO Science for Peace and Security B: Physics and Biophysics (2008).
[7] Y. Yang, Y. Li, H. Wang, T. Li, B. Wu, Explosives detection using photoneutrons produced by X-rays, Nucl. Instrum. Meth. Phys. Res. A 579 (2007) 400–403.
[8] T. Gozani, D. Strellis, Advances in neutron based bulk explosive detection. Nucl. Inst. Meth. Phys. Res. B 261 (2007) 311-315.
[9] Y. Takahashi, T. Misawa, C.H. Pyeon, S. Shiroya, K. Yosikawa, Landmine detection method combined with backscattering neutrons and capture g-rays from hydrogen, Appl. Radiat. Isot. 69 (2011) 1027-1032.
[10] IAEA, Combating illicit trafficking in nuclear and other radioactive material. International Atomic Energy Agency Nuclear Security Series No. 6, Vienna, (2007).
[11] I. Hee-Jung, S. Kyuseok, Applications of prompt gamma ray neutron activation analysis: Detection of illicit materials. Appl. Spect. Rev. 44 (2009) 317-334.
[12] IAEA, Combating illicit trafficking in nuclear and other radioactive material, International Atomic Energy Agency Nuclear Security Series No. 6. Vienna, (2007).
[13] F. Palacios, J. Ricardo, D. Palacios, L. Sajo-Bohus, 3-D Image reconstruction of nuclear tracks induced in CR-39 detectors by means of digital holography, AIP Conf. Procc. 884, (2007) 485-490.
DOI: 10.1063/1.2710637
[14] M. Markó, G. Krexner, J. Chefer, A. Szakái, L. Cser, Atomic resolution holography using advanced reconstruction techniques for two-dimensional detectors, New J. Phys. 12 (2010) 1-18.
[15] S.A. Martinez-Ovalle, R. Barquero, J.M. Gómez-Ros, A.M. Lallena, Neutron dose equivalent and neutron spectra in tissue for clinical linacs operating at 15, 18 and 20 MV. Radiat. Prot. Dosim. 147 (2011) 498-511.
DOI: 10.1093/rpd/ncq501
[16] H.R. Vega-Carrillo, B. Hernández-Almaraz, V.M. Hernández-Dávila, A. Ortíz-Hernández, Neutron spectrum and doses in a 18 MV linac, J. Radioanal. Nucl. Chem. 283 (2010) 261-265.
[17] H.R. Vega-Carrillo, S.A. Martinez-Ovalle, A.M. Lallena, G.A. Mercado, J.L. Benites-Rengifo, Neutron and photon spectra in linacs, Appl. Radiat. Isot. 71 (2012) 75-80.
[18] IAEA, Radiological safety aspects of the operation of electron linear accelerator, International Atomic Energy Agency Technical Report Series 188, Vienna, (1979).
[19] M. Králik, K. Turek, Characterisation of neutron fields around high energy X-ray radiotherapy machines. Rad. Prot. Dosim. 110 (2004) 503-507.
DOI: 10.1093/rpd/nch274
[20] A. N. Ermakov, I. V. Makarenko, V. N. Orlin, Multi-particle photonuclear reactions behind Giant Dipole resonance, J. Korean Phy. Soc. 59 (2011) 1936-(1939).
DOI: 10.3938/jkps.59.1936
[21] N. Rozlosnik, L. Sajo-Bohus, C. Birattari, L. Biro, K. Havancsak, Direct observation of latent nuclear tracks in organic material by atomic force microscopy, Fourth Foresight Conf. on Molecular Nanotech. Nov. 5–9, 1997, Palo Alto, CA, USA.
[22] N. Rozlosnik, C.S. Glavak, J. Palfalvi, L. Sajo-Bohus, C. Birattari, E. Gadioli, Investigations of nuclear reaction products by Atomic Force Microscopy, Radiat. Meas. 28 (1997) 277–280.
[23] C. Vazquez-Lopez, R. Fragoso, J.I. Golzarri, F. Castillo-Mej, M. Fuji, G. Espinosa, The atomic force microscope as a fine tool for nuclear track studies, Radiat. Meas. 34 (2001) 189–191.
[24] R. Martín-Landrove, L. Sajo-Bohus, D. Palacios, Nuclear track evolution by capillary condensation during etching in SSNT detectors, Radiat. Meas. 50 (2013) 241-245.
[25] G. Somogyi, Development of etched nuclear tracks. Nucl. Instrum. Meth. 173 (1980) 21-42.
[26] D. Nikezic, D. Kostic, C. Yip, K.N. Yu, Comparison among different models of track growth and experimental data, Radiat. Meas. 41 (2006) 253-256.
[27] M. Fromm, A. Chambaudet, F. Membrey, Data bank for alpha particle tracks in CR39 with energies ranging from 0. 5 to 5 MeV recording for various incident angles, Nucl. Tracks Rad. Meas. 15 (1998) 115-118.
[28] P.C. Kalsi, A. Ramaswami, V.K. Manchanda, Solid state nuclear track detectors and their applications, BARC Newsletter 257 (2005) 6-15.
[29] A.N. Garg, R.J. Batra, Isotopic sources in neutron activation analysis. J. Radioanal. Nucl. Chem. 98 (1986) 167-194.
[30] H.R. Vega-Carrillo, E. Manzanares-Acuña, M.P. Iñiguez, E. Gallego, A. Lorente, Spectrum of isotopic neutrons sources inside concrete wall spherical cavities. Radiat. Meas. 42 (2007) 1373-1379.
[31] D. Kiss, P. Quittner (Eds. ), Neutron Physics, MTA, Budapest, Hungary. (1971).
[32] D. J. Hughes and C. Eggler, Cloud-chamber energy measurement of photo-neutron sources, Phys. Rev. 72 (1947) 902-906.
[33] N.E. Hertel, M.P. Shannon, Using the photoneutron interaction to detect special nuclear material, Procc. of the 38th Midyear Meeting of the Health Physics Society: Materials Control and Security: Risk Assessment, Handling, and Detection. New Orleans, Feb. 13-16, pp.82-89: (2005).
[34] A. Chilton, J. Shultis, R. Faw, Principles of radiation shielding, Prentice-Hall, Englewood Cliffs, NJ, (1984).
[35] NCRP, Neutron contamination from medical electron accelerators, National Council on Radiation Protection and Measurements Report No. 79, Bethesda, MD, (1984).
[36] NCRP, Radiation protection for particle accelerator facilities, National Council on Radiation Protection and Measurements Report No. 144, Bethesda, MD, (2003).
DOI: 10.1093/rpd/nch479
[37] M. White, Development and implementation of photonuclear cross section data for mutually coupled neutron-photon transport calculations in MCNP. LA-13744-T Los Alamos National Laboratory, (2000).
DOI: 10.2172/781606
[38] G. Foldiak, Industrial application of radioisotopes, MTA – Budapest, Hungary (1972).
[39] L. Sajó-Bohus, H. Barros, E.D. Greaves, H.R. Vega-Carrillo, Graphite moderated 252Cf source. Appl. Radiat. Isot., doi: 10. 1016/j. apradiso. 2015. 02. 025, (2015).
[40] L. Sajo-Bohus, E.D. Greaves, J.K. Pálfalvi, Studies in interdisciplinary fields employing Nuclear track detectors (NTDs), in: N. Singh (Ed. ) Radioisotopes – Applications in Bio-Medical Science, InTech, 2011, pp.173-196.
DOI: 10.5772/24555
[41] L. Sajó-Bohus, J. K. Pálfalvi, O. Arevalo, E. D. Greaves, P. Németh, D. Palacios, J. Szabo, I. Eördögh, Neutron induced complex reaction analysis with 3D nuclear track simulation, Radiat. Meas. 40 (2005) 442-447.
[42] D. Nikezic, K. N. Yu, Three-dimensional Analytical Determination of the track parameters: Over-etched Tracks, Rad. Meas. 37 (2003) 39-45.
[43] J. Palfalvi, L. Sajo-Bohus, I. Eordogh, First international intercomparison of image analyzers, Radiat. Meas. 31 (1999) 157-166.
[44] J. Palfalvi, I. Eordog, K. Szasz, L. Sajo Bohus, A New Generation Image Analyzer for Evaluation SSNT Detector, Radiat. Meas. 28, (1997) 849-852.
[45] W. Gonzalez, G. Espinosa, M. Zuin, G. Viesti, F. Pino, J.I. Golzarri, E. Martines, J. Bermudez, D. Moro, J.K. Palfalvi, L. Sajo-Bohus, PADC detected external neutron field by nuclear tracks at RFX-mod, J. Nucl. Phys. Mat. Sci. Radiat. Appl. 2 (2014).
[46] R. Barquero, R. Mendez, H.R. Vega-Carrillo, M.P. Iñiguez, T.M. Edwards, Neutron spectra and dosimetric features around an 18 MV Linac accelerator, Health Phys. 88 (2005) 48-58.
[47] R. Takam, E. Bezak, L.G. Marcu, E. Yeoh, Out-of-field neutron and leakage photon exposures and the associated risk of second cancers in high-energy photon radiotherapy: Current statuts, Radiat. Res. 176 (2011) 508-520.
DOI: 10.1667/rr2606.1
[48] E. Bezak, R. Takam, L.G. Marcu, Peripheral photon and neutron doses from prostate cancer external beam irradiation, Radiat. Prot. Dosim. doi: 10. 1093/rpd/ncu362. (2015).
DOI: 10.1093/rpd/ncu362
[49] R.A. Halg, J. Besserer, M. Boschung, S. Mayer, A.J. Lomax, U. Schneider, Measurements of the neutron dose equivalent for various radiation quantities, treatment machines and delivery techniques in radiation therapy, Phys. Med. Biol. 59 (2014).
[50] A. Szydlowski, M. Jaskola, A. Malinowska, S. Pszona, A. Wysocka-Rabin, A. Korman, K. Pytel, R. Prokopowicz, J. Rostkowska, W. Bulski, M. Kuk, Application of nuclear track detectors as sensors for photoneutrons generated by medical accelerators, Radiat. Meas. 50 (2013).
[51] V. L. Chakhlov, Z. W. Bell, M. M. Shtein, V. M. Golovkov, Photoneutron source based on a compact 10 MeV betatron, Nucl. Instr. Meth. Phys. Res. A 422 (1999) 5-9.
DOI: 10.2172/666020
[52] M. Tatari, A.H. Ranjbar, Design of a photoneutron source based on 10 MeV electrons of radiotherapy linac, Ann. Nucl. Ener. 63 (2014) 69–74.
[53] A. Sari, M. Agelou, I. Bessieres, F. Carrel, M. Gmar, F. Laine, A. Lyoussi, S. Normand, A. Ostrowsky, L. Sommier, Characterization of the photoneutron flux emitted by an electron accelerator using an activation detector, IEEE Trans. Nucl. Sci. 60 (2013).
[54] M.A. Saeed, Systematic treatment of photo-nuclear cross section calculations. J. Al Nahrain University-Science 11 (2008) 66-75.
[55] IAEA, Handbook on photonuclear data for applications. Cross-sections and spectra. IAEA-TECDOC-1178, International Atomic Energy Agency, Vienna, (2000).
[56] G. Tosi, A. Torresin, S. Agosteo, A. Folgio Para, V. Sangiust, L. Zeni, M. Silari, Neutron measurements around medical electron accelerators by active and passive detection techniques, Med. Phys. 18 (1991) 54-60.
DOI: 10.1118/1.596751
[57] J.L. Benites-Rengifo, H.R. Vega-Carrillo, Photoneutron spectrum measured with Bonner sphere spectrometer in Planetario method mode, Appl. Radiat. Isot. 83 (2014) 256-259.
[58] J. C. Liu, K. R. Kase, X. S. Mao, W. R. Nelson, J. H. Kleck, S. Johnson, Calculations of photoneutrons from Varian Clinac accelerators and their transmissions in materials, SLAC-PUB-7404 Stanford Linear Accelerator Center, Stanford, CA. (1997).
[59] B.J. Patil, S.T. Chavan, S.N. Pethe, R. Krishnan, V.N. Bhoraskar, S.D. Dhole, Estimation of neutron production from accelerator head assembly of 15 MV medical LINAC using FLUKA simulations, Nucl. Instr. Meth. Phys. Res. B 269 (2011) 3261–3265.
[60] H.R. Vega-Carrillo, B. Hernandez-Almaraz, V.M. Hernandez-Davila, A. Ortiz-Hernandez, Neutron spectrum and dose in a 18 MV linac, J. Radioanal. Nucl. Chem. 283 (2010). 261-265.
[61] H.R. Vega-Carrillo, A. Ortiz-Hernandez, V.M. Hernandez-Davila, B. Hernandez-Almaraz, T. Rivera, H*(10) and neutron spectra around linacs, J. Radioanal. Nucl. Chem. 283 (2011) 537-540.
[62] J. Palfalvi, A.M. Bhagwat, L. Medveczky, Investigations on the Neutron Sensitivity of Kodak-Pathe LR 115 Recoil Track Detector, Health Phys. 41(3) (1981) 505-512.
[63] E. Savvidis, D. Sampsonidis, M. Zamani, A CR-39 Fast neutron dosemeter based on an (n, a) converter, Radiat. Prot. Dosim. 44(1-4) (1992) 341-342.
[64] M. Izerrouken, J. Skvarc, R. Ilic, A wide energy range personnel neutron dosimeter, Radiat. Meas. 37 (2003) 21– 24.
[65] R. Alvarado, D. Palacios, L. Sajo-Bohus, E.D. Greaves, I. Goncalves H. Barros, P. Nemeth, Neutron flux characterization using LR-115 NTD and binary glass metal as converter, Rev. Mex. Fís. S 56 (2010) 5-8.
[66] A.R. El-Sersy, N.E. Khaled, S.A. Eman, Determination of CR-39 detection efficiency for fast neutron registration and the absolute neutron dosimetry, Nucl. Instrum. Meth. Phys. Res. B 215 (2004) 443–448.
[67] A.Y. Hassen, N.F. Khadhm, Evaluation of the uranium concentrations in human tissues samples by fission fragments induced using CR-39 nuclear track detector, Int. J. Appl. Innov. Eng. Manag. 3 (2014) 98-104.
[68] J.K. Pálfalvi, J. Szabó, Yu. Akatov, L. Sajó-Bohus, I. Eördögh, Cosmic ray studies on the ISS using SSNTD, BRADOS Projects, 2001-2003, Radiat. Meas. 40 (2005) 428-432.
[69] J. Szabó, J.K. Pálfalvi, V.A. Shurshakov, R.V. Tolochek, Preliminary results of the SPD Box Experiments onboard ISS, 16th Workshop on Radiation Monitoring for the International Space Station, 6-8 September (2011).
[70] V. Kumar, R.G. Sonkawade, A.S. Dhaliwal, Optimization of CR-39 as neutron dosimeter, Indian J. Pure Appl. Phys. 48 (2010) 466-469.
[71] Matiullah, K. Kudo, X. Yang, Calibration of Various Types of Neutron Dosimeters in a Heavy Water Moderated and Monoenergetic Neutron Fields-II. Experimental, Radiat. Meas. 22 (199) 687-690.
[72] IAEA, Compendium of neutron spectra and detector responses for radiation protection purposes. Technical reports series No. 318, International Atomic Energy Agency, Vienna, (1990).
[73] C. Brun, M. Fromm, M. Jouffroy, P. Meyer, J.E. Groetz, F. Abel, A. Chambaudet, B. Dorschel, D. Hermsdorf, R. Bretschneider, K. Kadner, H. Kuhne, Intercomparative study of the detection characteristics of the CR-39 SSNTD for Light Ions: Present status of the Besancon-Dresden approaches, Radiat. Meas. 31 (1999).
[74] J. K. Pálfalvi, L. Sajó-Bohus, J. Szabó, J. Pálfalvi Jr., Study on etching of PADC track etch detector by an alpha source, Under Preparation (2015).
[75] J.K. Pálfalvi, L. Sajo-Bohus, M. Balasko, I. Balashzy, Neutron field mapping and dosimetry by CR-39 for radiography and other applications, Radiat. Meas. 34 (2001) 471-475.
[76] N. Bohr, J.A. Wheeler, The mechanism of nuclear fission, Phys. Rev. 56 (1939) 426-42.
[77] G. Bernardini, R. Reitz, E. Segre, Photo-mesonic fission of bismuth, Phys. Rev. 90 (1953) 573-574.
[78] J. Goldemberg, L. Katz, Photoneutron cross sections of some elements, Canadian J. Phys. 32 (1954) 49-59.
DOI: 10.1139/p54-005
[79] P.A. Dickey and P. Axel, U-238 and Th-232 Photo-fission and photo-neutron emission near threshold, Phys. Rev. Lett. 35 (1975) 501-504.
[80] D. I. Thwaites, J. B. Tuohy, Back to the future: the history and development of the clinical linear accelerator, Phys. Med. Biol. 51 (2006) R343–R362.
[81] X.G. Xu, B. Bednarz, H. Paganetti, A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction, Phys. Med. Biol. 53 (2008) R193-R241.
[82] A. Naseri, A. Mesbahi, A review on photoneutrons characteristics in radiation therapy with high-energy photon beams, Rep. Pract. Oncol. Radiother. 15 (2010) 138-44.
[83] S.M. Hashemi, B. Hashemi-Malayeri, G. Raisali, P. Shokrani, A.A. Sharafi, A study of the photoneutron dose equivalent resulting from a Saturn 20 medical linac using Monte Carlo method. Nukleonika 52 (2007) 39-43.
DOI: 10.1093/rpd/ncm421
[84] K. Polaczek-Grelik, A. Orlef, M. Dybek, A. Konefal, W. Zipper, Linear accelerator therapeutic dose-induced radioactivity dependence, Appl. Radiat. Isot. 68 (2010) 763-766.
[85] H.R. Vega-Carrillo, S.A. Martínez-Ovalle, A.M. Lallena, G.A. Mercado, J.L. Benites-Rengifo, Neutron and photon spectra in Linacs, Appl. Rad. Isot. 71 (2012) 75-80.
[86] L. Jao-Perng, Ch. Tieh-Chi, L. Sung-Yen, L. Mu-Tai, The measurement of photoneutrons in the vicinity of a Siemens Primus linear accelerator, Appl. Radiat. Isot. 55 (2001) 315–321.
[87] P.H. McGlinley, M. Wood, M. Mills, R. Rodriguez. Dose levels due to neutrons in the vicinity of high-energy medical accelerators, Med. Phys. 3 (1976) 397-402.
DOI: 10.1118/1.594256
[88] NCRP, Neutron contamination from medical electron accelerators. Report No. 79 National Council on Radiation Protection and Measurements, Bethesda, MD, (1989).
[89] R. Martín-Landrove, L. Sajo-Bohus, L. Spencer, D. Palacios, J. Dávila, Contribution of (n, g) Reaction in the Out-of-Field Absorbed Dose for Patients under Radiotherapy Treatments with High MV Linear Accelerators, presented at the X Latin American Symposium on Nuclear Physics and Applications (X LASNPA), December 1-6 2013 Montevideo, Uruguay.
[90] MedicalDealer. [on line]. Market Analysis: Radiation oncology. <http: /medicaldealer. com/ market-analysis-radiation-oncology/>. [Reviewed on May 2015].
[91] H.R. Vega-Carrillo, R. Barquero, G.A. Mercado, Passive neutron area monitor with CR39, Int. J. Radiat. Res. 11 (2013) 149-153.
[92] R. Bedogni, A. Esposito, A. Gentile, M. Angelone, G. Gualdrini, Determination and validation of a response matrix for a passive Bonner sphere spectrometer based on gold foils, Radiat. Meas. 43 (2008) 1104-1107.
[93] R. Bedogni, P. Ferrari, G. Gualdrini, A. Esposito, Design and experimental validation of a Bonner sphere spectrometer based on Dysprosium activation foils, Radiat. Meas. 45 (2010) 1201-1204.
[94] S. Paul, S.P. Tripathy, G.S. Sahoo, T. Bandyopadhyay, P.K. Sarkar, Measurement of fast neutron spectrum using CR-39 detectors and a new image analysis program, Nucl. Instrum. Meth. Phys. Res. A 729 (2013) 444-450.
[95] S.P. Tripathy, S. Paul, G.S. Sahoo, V. Suman, C. Sunil, D.S. Joshi et al., Measurement of fast neutron spectra from the interaction of 20 MeV protons with thick Be and C targets using CR-39 detector, Nucl. Instrum. Meth. Phys. Res. B 318 (2014).
[96] S. Mayer, M. Boschung, Comparison of different PADC materials for neutron dosimetry, Radiat. Prot. Dosim. 161 (2014) 104-107.
DOI: 10.1093/rpd/nct241
[97] C. L. Lee, X.L. Zhou, R. J. Kudchadker, F. Harmon, Y. D. Harker, A Monte Carlo dosimetry-based evaluation of the 7Li(p, n)7Be reaction near threshold for accelerator boron neutron capture therapy, Med. Phys. 27(1) (2000) 192-202.
DOI: 10.1118/1.598884
[98] Ke Guotua, Sun Ziyonga, Shen Fenga, Liu Tiancaia, Li Yiguoa, Zhou Yongmao, The study of physics and thermal characteristics for in-hospital neutron irradiator (IHNI), App. Radiat. Isot. 67 (2009) S234–S237.
[99] C.L. Tessa, T. Berger, R. Kaderka, D. Schardt, S. Burmeister, J. Labrenz, G. Reitz, M. Durante, Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions, Phys Med Biol. 59 (2014).
[100] R.M. Howell, S. F. Kry, E. Burgett, N. E. Hertel, D. S. Followill, Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators, Med. Phys. 36 (2009) 4027-4038.
DOI: 10.1118/1.3159300
[101] Matiullah, K. Kudo, X Yanh, Calibration of various types of neutron dosimeters in a Heavy water moderated and monoenergetic neutron fields-II. Experimental, Nucl. Radiat. Meas. 22 (1991) 687-690.
[102] F. H. Séguin, J. A. Frenje, C. K. Li, D. G. Hicks, S. Kurebayashi, J. R. Rygg, B. -E. Schwartz, R. D. Petrasso, Spectrometry of charged particles from inertial-confinement-fusion plasmas, Rev. Scien. Instr. 74 (2003) 975-995.
DOI: 10.1063/1.1518141
[103] W. Dunn, J.K. Shultis, Exploring Monte Carlo methods. Elsevier, Holland, (2012).
[104] M. Kralik, A. Aroua, M. Grecescu, V. Mares, T. Novotny, H. Schraube, B. Wiegel, Specification of Bonner sphere system for neutron spectrometry, Radiat. Prot. Dosim. 70 (1997) 279-284.
[105] H.R. Vega-Carrillo, B.W. Wehring, K.G. Veinot, N.E. Hertel, Response matrix for a multisphere spectrometer using a 6LiF thermoluminescent dosimeter. Radiat. Prot. Dosim. 81 (1999) 133-140.
[106] H.R. Vega-Carrillo, E. Manzanares-Acuña, V.M. Hernadez-Davila, G.A. Mercado Sanchez, Response matrix of a multisphere neutron spectrometer with an 3He proportional counter, Rev. Mex. Fis. 51 (2005) 47-52.
[107] R. Bedogni, A. Esposito, A. Gentile, M. Angelone, G. Gualdrini, Determination and validation of a response matrix for a passive Bonner sphere spectrometer based on gold foils. Radiat. Meas. 43 (2008) 1104-1107.
[108] H.R. Vega-Carrillo, E. Gallego, A. Lorente, Response matrix of a BSS/6LiI(Eu). Nucl. Tech. 168 (2009) 359-362.
[109] J.S. Wan, G.N. Zhu, Y. Zhao, N.N. Liu, Q.C. Zhuang, L.X. Zhang, Sh.L. Guo, Computer studies of detection efficiency of fast neturon spectrum based on PADC using the Monte Carlo method, Radiat. Meas. 36 (2003) 163-197.
[110] J. F Briestmeister (ed), MCNPTM - A general Monte Carlo N-particle transport code, Version4C, Report LA-13709-M Los Alamos National Laboratory, (2000).
[111] J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids, Pergamon Press, New York, (1985).
[112] H. Zaki-Dizaji, M. Shahriari, G.R. Etaati, Monte Carlo calculation of CR-39 efficiency for fast neutron detection using a combination of MCNP and SRIM codes, and comparison with experimental results, Radiat. Meas. 42 (2007) 1332-1334.
[113] A.A.M. Aslam, K. James, S.A. Durrani, A computer program for the development of a fast neutron spectrometer based on electrochemically etched CR-39 detectors with radiator and degraders, Nucl. Track Radiat. Meas. 13 (1987) 131-137.
[114] A.A.M. Aslam, S.A. Durrani, Fast neutron spectrometry based on the registration of proton recoils in electrochemically etched CR-39 detector: Part II Theoretical, Nucl. Track Radiat. Meas. 15 (1988) 503-506.
[115] G. Dajko, Fast neutron spectrometry using CR-39 track detectors. Radiat. Prot. Dosim. 34 (1990) 9-12.
[116] G. Saint Martin, F. López, O.A. Bernaola, Neutron dosimetry device using PADC nuclear track detectors, J. Radioanal. Nucl. Chem. 287 (2011) 635-638.
[117] R. Barquero, R. Mendez, H.R. Vega-Carrillo, M.P. Iñiguez, T.M. Edwards, Neutron spectra and dosimetric features around an 18 MV linac accelerator, Health Phys. 88 (2005) 48-58.
[118] MCNPX, Monte Carlo N-particle transport code system for multiparticle and high-energy applications. Version 2. 3. 0, Report LA-UR-02-2607 Los Alamos National Laboratory, (2002).