SSNTD Technique in Photo-Neutron Applications

Article Preview

Abstract:

Passive Solid State Nuclear Track Detectors (SSNTDs) are a versatile tool for neutron studies as has been shown long ago and several good quality materials are commercially available. They are useful for charged particle detection in the linear energy transfer (LET) range above the threshold value of ~10 keV μm-1. Linacs, operating above 6 MeV up to the energy region where radiotherapy is applied usually up to ~25MeV, induce unwanted photo-neutron field; their spectra shows two components due to reaction dynamics based on evaporation and knock-on mechanisms. Neutrons produced by Linacs are often neglected in health application; however, today it has become necessary to assess the effect on patient, staff and radiation workers. Radiation studies using SSNTDs play a major role in this case. Other fields also take advantage of the passive detectors properties; in fact they are employed with success to measure neutron signals relevant for plasma diagnostics as it was demonstrated at the RFX facility as part of the ITER project. The PADC-NTD techniques provide information on external neutron field values around the RFX-installation during pulsed operation. In any case, converter materials, as charged particles from (n, p) and (n, α) reactions, are required to produce neutron fingerprints through latent tracks. These once etched provide information on neutron fluence spatial values. Track histograms are then employed to determine photo-neutron induced damage in materials as well as radiation dose to both patient and professionally exposed workers. The estimated neutron fluence that can be determined by NTM covers a large range of values, the largest being above 1010 (± 12%) neutrons/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 239)

Pages:

180-214

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Sajo Bohus, Ma. M Mackowiak de Antczak, E. D. Greaves, A. Antczak, J. Bermudez, Zs. Kasztovszky, T. Poirier, A. Simonits, Incipient Archaeometry in Venezuela: Provenance study of Pre-hispanic pottery figurines, J. Radioanal. Nucl. Chem. 265 (2005).

DOI: 10.1007/s10967-005-0816-4

Google Scholar

[2] H. Barros, L. Sajó-Bohus, Zs. Kasztovszky, H. Postma, P. Vermaercke, P. Schillebeeckx, D. Palacios, E.D. Greaves, M. Mackowiak de Antczak, Neutron methods for Amerindian Archaeological Provenance study and authentication of Etruscan bronze art objects, Proc. 11th Intern. Conf. on Nuclear Reaction Mechanisms, Varenna, Villa Monastero-Italy, June 12 - 16, (2006).

Google Scholar

[3] J.K. Pálfalvi, Y. Akatov, J. Szabó, L. Sajó-Bohus, I. Eördögh, Evaluation of solid state nuclear track detector stacks exposed on the International Space Station, Radiat. Prot. Dosim. 110 (2004) 784-788.

DOI: 10.1093/rpd/nch140

Google Scholar

[4] R. Verma, M.V. Roshan, F. Malik, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, R.S. Rawat, Compact sub-kilojoule range fast miniature plasma focus as portable neutron source, Plasma Sources Sci. Technol. 17 (2008) 1-11.

DOI: 10.1088/0963-0252/17/4/045020

Google Scholar

[5] A. Malinowska, A. Szydlowski, M.J. Sadowski, J. Zebrowskia, M. Scholz, M. Paduch, M. Jaskola, A. Korman, Measurements of fusion produced protons by means of SSNTDs, Radiat. Meas. 43 (2008) S295-S298.

DOI: 10.1016/j.radmeas.2008.04.041

Google Scholar

[6] Viesti G., Donzella A., Bonomi G., Botosso C., Fabris D., Lunardon M., Moretto S., Nebbia G., Pesente S., Pino F., Sajo-Bohus L., Zenoni A. Search of explosives in vehicles using tagged neutrons, NATO Science for Peace and Security B: Physics and Biophysics (2008).

DOI: 10.1007/978-1-4020-8466-9_5

Google Scholar

[7] Y. Yang, Y. Li, H. Wang, T. Li, B. Wu, Explosives detection using photoneutrons produced by X-rays, Nucl. Instrum. Meth. Phys. Res. A 579 (2007) 400–403.

Google Scholar

[8] T. Gozani, D. Strellis, Advances in neutron based bulk explosive detection. Nucl. Inst. Meth. Phys. Res. B 261 (2007) 311-315.

Google Scholar

[9] Y. Takahashi, T. Misawa, C.H. Pyeon, S. Shiroya, K. Yosikawa, Landmine detection method combined with backscattering neutrons and capture g-rays from hydrogen, Appl. Radiat. Isot. 69 (2011) 1027-1032.

DOI: 10.1016/j.apradiso.2011.01.008

Google Scholar

[10] IAEA, Combating illicit trafficking in nuclear and other radioactive material. International Atomic Energy Agency Nuclear Security Series No. 6, Vienna, (2007).

Google Scholar

[11] I. Hee-Jung, S. Kyuseok, Applications of prompt gamma ray neutron activation analysis: Detection of illicit materials. Appl. Spect. Rev. 44 (2009) 317-334.

DOI: 10.1080/05704920902852125

Google Scholar

[12] IAEA, Combating illicit trafficking in nuclear and other radioactive material, International Atomic Energy Agency Nuclear Security Series No. 6. Vienna, (2007).

Google Scholar

[13] F. Palacios, J. Ricardo, D. Palacios, L. Sajo-Bohus, 3-D Image reconstruction of nuclear tracks induced in CR-39 detectors by means of digital holography, AIP Conf. Procc. 884, (2007) 485-490.

DOI: 10.1063/1.2710637

Google Scholar

[14] M. Markó, G. Krexner, J. Chefer, A. Szakái, L. Cser, Atomic resolution holography using advanced reconstruction techniques for two-dimensional detectors, New J. Phys. 12 (2010) 1-18.

DOI: 10.1088/1367-2630/12/6/063036

Google Scholar

[15] S.A. Martinez-Ovalle, R. Barquero, J.M. Gómez-Ros, A.M. Lallena, Neutron dose equivalent and neutron spectra in tissue for clinical linacs operating at 15, 18 and 20 MV. Radiat. Prot. Dosim. 147 (2011) 498-511.

DOI: 10.1093/rpd/ncq501

Google Scholar

[16] H.R. Vega-Carrillo, B. Hernández-Almaraz, V.M. Hernández-Dávila, A. Ortíz-Hernández, Neutron spectrum and doses in a 18 MV linac, J. Radioanal. Nucl. Chem. 283 (2010) 261-265.

DOI: 10.1007/s10967-009-0337-7

Google Scholar

[17] H.R. Vega-Carrillo, S.A. Martinez-Ovalle, A.M. Lallena, G.A. Mercado, J.L. Benites-Rengifo, Neutron and photon spectra in linacs, Appl. Radiat. Isot. 71 (2012) 75-80.

DOI: 10.1016/j.apradiso.2012.03.034

Google Scholar

[18] IAEA, Radiological safety aspects of the operation of electron linear accelerator, International Atomic Energy Agency Technical Report Series 188, Vienna, (1979).

Google Scholar

[19] M. Králik, K. Turek, Characterisation of neutron fields around high energy X-ray radiotherapy machines. Rad. Prot. Dosim. 110 (2004) 503-507.

DOI: 10.1093/rpd/nch274

Google Scholar

[20] A. N. Ermakov, I. V. Makarenko, V. N. Orlin, Multi-particle photonuclear reactions behind Giant Dipole resonance, J. Korean Phy. Soc. 59 (2011) 1936-(1939).

DOI: 10.3938/jkps.59.1936

Google Scholar

[21] N. Rozlosnik, L. Sajo-Bohus, C. Birattari, L. Biro, K. Havancsak, Direct observation of latent nuclear tracks in organic material by atomic force microscopy, Fourth Foresight Conf. on Molecular Nanotech. Nov. 5–9, 1997, Palo Alto, CA, USA.

DOI: 10.1088/0957-4484/8/1/008

Google Scholar

[22] N. Rozlosnik, C.S. Glavak, J. Palfalvi, L. Sajo-Bohus, C. Birattari, E. Gadioli, Investigations of nuclear reaction products by Atomic Force Microscopy, Radiat. Meas. 28 (1997) 277–280.

DOI: 10.1016/s1350-4487(97)00081-4

Google Scholar

[23] C. Vazquez-Lopez, R. Fragoso, J.I. Golzarri, F. Castillo-Mej, M. Fuji, G. Espinosa, The atomic force microscope as a fine tool for nuclear track studies, Radiat. Meas. 34 (2001) 189–191.

DOI: 10.1016/s1350-4487(01)00149-4

Google Scholar

[24] R. Martín-Landrove, L. Sajo-Bohus, D. Palacios, Nuclear track evolution by capillary condensation during etching in SSNT detectors, Radiat. Meas. 50 (2013) 241-245.

DOI: 10.1016/j.radmeas.2012.06.012

Google Scholar

[25] G. Somogyi, Development of etched nuclear tracks. Nucl. Instrum. Meth. 173 (1980) 21-42.

Google Scholar

[26] D. Nikezic, D. Kostic, C. Yip, K.N. Yu, Comparison among different models of track growth and experimental data, Radiat. Meas. 41 (2006) 253-256.

DOI: 10.1016/j.radmeas.2005.09.006

Google Scholar

[27] M. Fromm, A. Chambaudet, F. Membrey, Data bank for alpha particle tracks in CR39 with energies ranging from 0. 5 to 5 MeV recording for various incident angles, Nucl. Tracks Rad. Meas. 15 (1998) 115-118.

DOI: 10.1016/1359-0189(88)90112-4

Google Scholar

[28] P.C. Kalsi, A. Ramaswami, V.K. Manchanda, Solid state nuclear track detectors and their applications, BARC Newsletter 257 (2005) 6-15.

Google Scholar

[29] A.N. Garg, R.J. Batra, Isotopic sources in neutron activation analysis. J. Radioanal. Nucl. Chem. 98 (1986) 167-194.

Google Scholar

[30] H.R. Vega-Carrillo, E. Manzanares-Acuña, M.P. Iñiguez, E. Gallego, A. Lorente, Spectrum of isotopic neutrons sources inside concrete wall spherical cavities. Radiat. Meas. 42 (2007) 1373-1379.

DOI: 10.1016/j.radmeas.2007.06.006

Google Scholar

[31] D. Kiss, P. Quittner (Eds. ), Neutron Physics, MTA, Budapest, Hungary. (1971).

Google Scholar

[32] D. J. Hughes and C. Eggler, Cloud-chamber energy measurement of photo-neutron sources, Phys. Rev. 72 (1947) 902-906.

DOI: 10.1103/physrev.72.902

Google Scholar

[33] N.E. Hertel, M.P. Shannon, Using the photoneutron interaction to detect special nuclear material, Procc. of the 38th Midyear Meeting of the Health Physics Society: Materials Control and Security: Risk Assessment, Handling, and Detection. New Orleans, Feb. 13-16, pp.82-89: (2005).

Google Scholar

[34] A. Chilton, J. Shultis, R. Faw, Principles of radiation shielding, Prentice-Hall, Englewood Cliffs, NJ, (1984).

Google Scholar

[35] NCRP, Neutron contamination from medical electron accelerators, National Council on Radiation Protection and Measurements Report No. 79, Bethesda, MD, (1984).

Google Scholar

[36] NCRP, Radiation protection for particle accelerator facilities, National Council on Radiation Protection and Measurements Report No. 144, Bethesda, MD, (2003).

DOI: 10.1093/rpd/nch479

Google Scholar

[37] M. White, Development and implementation of photonuclear cross section data for mutually coupled neutron-photon transport calculations in MCNP. LA-13744-T Los Alamos National Laboratory, (2000).

DOI: 10.2172/781606

Google Scholar

[38] G. Foldiak, Industrial application of radioisotopes, MTA – Budapest, Hungary (1972).

Google Scholar

[39] L. Sajó-Bohus, H. Barros, E.D. Greaves, H.R. Vega-Carrillo, Graphite moderated 252Cf source. Appl. Radiat. Isot., doi: 10. 1016/j. apradiso. 2015. 02. 025, (2015).

DOI: 10.1016/j.apradiso.2015.02.025

Google Scholar

[40] L. Sajo-Bohus, E.D. Greaves, J.K. Pálfalvi, Studies in interdisciplinary fields employing Nuclear track detectors (NTDs), in: N. Singh (Ed. ) Radioisotopes – Applications in Bio-Medical Science, InTech, 2011, pp.173-196.

DOI: 10.5772/24555

Google Scholar

[41] L. Sajó-Bohus, J. K. Pálfalvi, O. Arevalo, E. D. Greaves, P. Németh, D. Palacios, J. Szabo, I. Eördögh, Neutron induced complex reaction analysis with 3D nuclear track simulation, Radiat. Meas. 40 (2005) 442-447.

DOI: 10.1016/j.radmeas.2005.02.011

Google Scholar

[42] D. Nikezic, K. N. Yu, Three-dimensional Analytical Determination of the track parameters: Over-etched Tracks, Rad. Meas. 37 (2003) 39-45.

DOI: 10.1016/s1350-4487(02)00129-4

Google Scholar

[43] J. Palfalvi, L. Sajo-Bohus, I. Eordogh, First international intercomparison of image analyzers, Radiat. Meas. 31 (1999) 157-166.

Google Scholar

[44] J. Palfalvi, I. Eordog, K. Szasz, L. Sajo Bohus, A New Generation Image Analyzer for Evaluation SSNT Detector, Radiat. Meas. 28, (1997) 849-852.

Google Scholar

[45] W. Gonzalez, G. Espinosa, M. Zuin, G. Viesti, F. Pino, J.I. Golzarri, E. Martines, J. Bermudez, D. Moro, J.K. Palfalvi, L. Sajo-Bohus, PADC detected external neutron field by nuclear tracks at RFX-mod, J. Nucl. Phys. Mat. Sci. Radiat. Appl. 2 (2014).

DOI: 10.15415/jnp.2014.21006

Google Scholar

[46] R. Barquero, R. Mendez, H.R. Vega-Carrillo, M.P. Iñiguez, T.M. Edwards, Neutron spectra and dosimetric features around an 18 MV Linac accelerator, Health Phys. 88 (2005) 48-58.

DOI: 10.1097/01.hp.0000142500.32040.ac

Google Scholar

[47] R. Takam, E. Bezak, L.G. Marcu, E. Yeoh, Out-of-field neutron and leakage photon exposures and the associated risk of second cancers in high-energy photon radiotherapy: Current statuts, Radiat. Res. 176 (2011) 508-520.

DOI: 10.1667/rr2606.1

Google Scholar

[48] E. Bezak, R. Takam, L.G. Marcu, Peripheral photon and neutron doses from prostate cancer external beam irradiation, Radiat. Prot. Dosim. doi: 10. 1093/rpd/ncu362. (2015).

DOI: 10.1093/rpd/ncu362

Google Scholar

[49] R.A. Halg, J. Besserer, M. Boschung, S. Mayer, A.J. Lomax, U. Schneider, Measurements of the neutron dose equivalent for various radiation quantities, treatment machines and delivery techniques in radiation therapy, Phys. Med. Biol. 59 (2014).

DOI: 10.1088/0031-9155/59/10/2457

Google Scholar

[50] A. Szydlowski, M. Jaskola, A. Malinowska, S. Pszona, A. Wysocka-Rabin, A. Korman, K. Pytel, R. Prokopowicz, J. Rostkowska, W. Bulski, M. Kuk, Application of nuclear track detectors as sensors for photoneutrons generated by medical accelerators, Radiat. Meas. 50 (2013).

DOI: 10.1016/j.radmeas.2012.06.011

Google Scholar

[51] V. L. Chakhlov, Z. W. Bell, M. M. Shtein, V. M. Golovkov, Photoneutron source based on a compact 10 MeV betatron, Nucl. Instr. Meth. Phys. Res. A 422 (1999) 5-9.

DOI: 10.2172/666020

Google Scholar

[52] M. Tatari, A.H. Ranjbar, Design of a photoneutron source based on 10 MeV electrons of radiotherapy linac, Ann. Nucl. Ener. 63 (2014) 69–74.

DOI: 10.1016/j.anucene.2013.07.025

Google Scholar

[53] A. Sari, M. Agelou, I. Bessieres, F. Carrel, M. Gmar, F. Laine, A. Lyoussi, S. Normand, A. Ostrowsky, L. Sommier, Characterization of the photoneutron flux emitted by an electron accelerator using an activation detector, IEEE Trans. Nucl. Sci. 60 (2013).

DOI: 10.1109/tns.2013.2251659

Google Scholar

[54] M.A. Saeed, Systematic treatment of photo-nuclear cross section calculations. J. Al Nahrain University-Science 11 (2008) 66-75.

DOI: 10.22401/jnus.11.3.08

Google Scholar

[55] IAEA, Handbook on photonuclear data for applications. Cross-sections and spectra. IAEA-TECDOC-1178, International Atomic Energy Agency, Vienna, (2000).

Google Scholar

[56] G. Tosi, A. Torresin, S. Agosteo, A. Folgio Para, V. Sangiust, L. Zeni, M. Silari, Neutron measurements around medical electron accelerators by active and passive detection techniques, Med. Phys. 18 (1991) 54-60.

DOI: 10.1118/1.596751

Google Scholar

[57] J.L. Benites-Rengifo, H.R. Vega-Carrillo, Photoneutron spectrum measured with Bonner sphere spectrometer in Planetario method mode, Appl. Radiat. Isot. 83 (2014) 256-259.

DOI: 10.1016/j.apradiso.2013.04.001

Google Scholar

[58] J. C. Liu, K. R. Kase, X. S. Mao, W. R. Nelson, J. H. Kleck, S. Johnson, Calculations of photoneutrons from Varian Clinac accelerators and their transmissions in materials, SLAC-PUB-7404 Stanford Linear Accelerator Center, Stanford, CA. (1997).

Google Scholar

[59] B.J. Patil, S.T. Chavan, S.N. Pethe, R. Krishnan, V.N. Bhoraskar, S.D. Dhole, Estimation of neutron production from accelerator head assembly of 15 MV medical LINAC using FLUKA simulations, Nucl. Instr. Meth. Phys. Res. B 269 (2011) 3261–3265.

DOI: 10.1016/j.nimb.2011.04.013

Google Scholar

[60] H.R. Vega-Carrillo, B. Hernandez-Almaraz, V.M. Hernandez-Davila, A. Ortiz-Hernandez, Neutron spectrum and dose in a 18 MV linac, J. Radioanal. Nucl. Chem. 283 (2010). 261-265.

DOI: 10.1007/s10967-009-0337-7

Google Scholar

[61] H.R. Vega-Carrillo, A. Ortiz-Hernandez, V.M. Hernandez-Davila, B. Hernandez-Almaraz, T. Rivera, H*(10) and neutron spectra around linacs, J. Radioanal. Nucl. Chem. 283 (2011) 537-540.

DOI: 10.1007/s10967-009-0363-5

Google Scholar

[62] J. Palfalvi, A.M. Bhagwat, L. Medveczky, Investigations on the Neutron Sensitivity of Kodak-Pathe LR 115 Recoil Track Detector, Health Phys. 41(3) (1981) 505-512.

DOI: 10.1097/00004032-198109000-00008

Google Scholar

[63] E. Savvidis, D. Sampsonidis, M. Zamani, A CR-39 Fast neutron dosemeter based on an (n, a) converter, Radiat. Prot. Dosim. 44(1-4) (1992) 341-342.

DOI: 10.1093/oxfordjournals.rpd.a081462

Google Scholar

[64] M. Izerrouken, J. Skvarc, R. Ilic, A wide energy range personnel neutron dosimeter, Radiat. Meas. 37 (2003) 21– 24.

DOI: 10.1016/s1350-4487(02)00131-2

Google Scholar

[65] R. Alvarado, D. Palacios, L. Sajo-Bohus, E.D. Greaves, I. Goncalves H. Barros, P. Nemeth, Neutron flux characterization using LR-115 NTD and binary glass metal as converter, Rev. Mex. Fís. S 56 (2010) 5-8.

DOI: 10.1016/j.radmeas.2008.04.017

Google Scholar

[66] A.R. El-Sersy, N.E. Khaled, S.A. Eman, Determination of CR-39 detection efficiency for fast neutron registration and the absolute neutron dosimetry, Nucl. Instrum. Meth. Phys. Res. B 215 (2004) 443–448.

DOI: 10.1016/j.nimb.2003.08.035

Google Scholar

[67] A.Y. Hassen, N.F. Khadhm, Evaluation of the uranium concentrations in human tissues samples by fission fragments induced using CR-39 nuclear track detector, Int. J. Appl. Innov. Eng. Manag. 3 (2014) 98-104.

Google Scholar

[68] J.K. Pálfalvi, J. Szabó, Yu. Akatov, L. Sajó-Bohus, I. Eördögh, Cosmic ray studies on the ISS using SSNTD, BRADOS Projects, 2001-2003, Radiat. Meas. 40 (2005) 428-432.

DOI: 10.1016/j.radmeas.2005.01.007

Google Scholar

[69] J. Szabó, J.K. Pálfalvi, V.A. Shurshakov, R.V. Tolochek, Preliminary results of the SPD Box Experiments onboard ISS, 16th Workshop on Radiation Monitoring for the International Space Station, 6-8 September (2011).

Google Scholar

[70] V. Kumar, R.G. Sonkawade, A.S. Dhaliwal, Optimization of CR-39 as neutron dosimeter, Indian J. Pure Appl. Phys. 48 (2010) 466-469.

Google Scholar

[71] Matiullah, K. Kudo, X. Yang, Calibration of Various Types of Neutron Dosimeters in a Heavy Water Moderated and Monoenergetic Neutron Fields-II. Experimental, Radiat. Meas. 22 (199) 687-690.

DOI: 10.1016/0969-8078(93)90157-y

Google Scholar

[72] IAEA, Compendium of neutron spectra and detector responses for radiation protection purposes. Technical reports series No. 318, International Atomic Energy Agency, Vienna, (1990).

Google Scholar

[73] C. Brun, M. Fromm, M. Jouffroy, P. Meyer, J.E. Groetz, F. Abel, A. Chambaudet, B. Dorschel, D. Hermsdorf, R. Bretschneider, K. Kadner, H. Kuhne, Intercomparative study of the detection characteristics of the CR-39 SSNTD for Light Ions: Present status of the Besancon-Dresden approaches, Radiat. Meas. 31 (1999).

DOI: 10.1016/s1350-4487(99)00102-x

Google Scholar

[74] J. K. Pálfalvi, L. Sajó-Bohus, J. Szabó, J. Pálfalvi Jr., Study on etching of PADC track etch detector by an alpha source, Under Preparation (2015).

DOI: 10.4028/www.scientific.net/ssp.238.16

Google Scholar

[75] J.K. Pálfalvi, L. Sajo-Bohus, M. Balasko, I. Balashzy, Neutron field mapping and dosimetry by CR-39 for radiography and other applications, Radiat. Meas. 34 (2001) 471-475.

DOI: 10.1016/s1350-4487(01)00209-8

Google Scholar

[76] N. Bohr, J.A. Wheeler, The mechanism of nuclear fission, Phys. Rev. 56 (1939) 426-42.

Google Scholar

[77] G. Bernardini, R. Reitz, E. Segre, Photo-mesonic fission of bismuth, Phys. Rev. 90 (1953) 573-574.

DOI: 10.1103/physrev.90.573

Google Scholar

[78] J. Goldemberg, L. Katz, Photoneutron cross sections of some elements, Canadian J. Phys. 32 (1954) 49-59.

DOI: 10.1139/p54-005

Google Scholar

[79] P.A. Dickey and P. Axel, U-238 and Th-232 Photo-fission and photo-neutron emission near threshold, Phys. Rev. Lett. 35 (1975) 501-504.

Google Scholar

[80] D. I. Thwaites, J. B. Tuohy, Back to the future: the history and development of the clinical linear accelerator, Phys. Med. Biol. 51 (2006) R343–R362.

DOI: 10.1088/0031-9155/51/13/r20

Google Scholar

[81] X.G. Xu, B. Bednarz, H. Paganetti, A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction, Phys. Med. Biol. 53 (2008) R193-R241.

DOI: 10.1088/0031-9155/53/13/r01

Google Scholar

[82] A. Naseri, A. Mesbahi, A review on photoneutrons characteristics in radiation therapy with high-energy photon beams, Rep. Pract. Oncol. Radiother. 15 (2010) 138-44.

DOI: 10.1016/j.rpor.2010.08.003

Google Scholar

[83] S.M. Hashemi, B. Hashemi-Malayeri, G. Raisali, P. Shokrani, A.A. Sharafi, A study of the photoneutron dose equivalent resulting from a Saturn 20 medical linac using Monte Carlo method. Nukleonika 52 (2007) 39-43.

DOI: 10.1093/rpd/ncm421

Google Scholar

[84] K. Polaczek-Grelik, A. Orlef, M. Dybek, A. Konefal, W. Zipper, Linear accelerator therapeutic dose-induced radioactivity dependence, Appl. Radiat. Isot. 68 (2010) 763-766.

DOI: 10.1016/j.apradiso.2009.09.051

Google Scholar

[85] H.R. Vega-Carrillo, S.A. Martínez-Ovalle, A.M. Lallena, G.A. Mercado, J.L. Benites-Rengifo, Neutron and photon spectra in Linacs, Appl. Rad. Isot. 71 (2012) 75-80.

DOI: 10.1016/j.apradiso.2012.03.034

Google Scholar

[86] L. Jao-Perng, Ch. Tieh-Chi, L. Sung-Yen, L. Mu-Tai, The measurement of photoneutrons in the vicinity of a Siemens Primus linear accelerator, Appl. Radiat. Isot. 55 (2001) 315–321.

DOI: 10.1016/s0969-8043(01)00084-7

Google Scholar

[87] P.H. McGlinley, M. Wood, M. Mills, R. Rodriguez. Dose levels due to neutrons in the vicinity of high-energy medical accelerators, Med. Phys. 3 (1976) 397-402.

DOI: 10.1118/1.594256

Google Scholar

[88] NCRP, Neutron contamination from medical electron accelerators. Report No. 79 National Council on Radiation Protection and Measurements, Bethesda, MD, (1989).

Google Scholar

[89] R. Martín-Landrove, L. Sajo-Bohus, L. Spencer, D. Palacios, J. Dávila, Contribution of (n, g) Reaction in the Out-of-Field Absorbed Dose for Patients under Radiotherapy Treatments with High MV Linear Accelerators, presented at the X Latin American Symposium on Nuclear Physics and Applications (X LASNPA), December 1-6 2013 Montevideo, Uruguay.

Google Scholar

[90] MedicalDealer. [on line]. Market Analysis: Radiation oncology. <http: /medicaldealer. com/ market-analysis-radiation-oncology/>. [Reviewed on May 2015].

Google Scholar

[91] H.R. Vega-Carrillo, R. Barquero, G.A. Mercado, Passive neutron area monitor with CR39, Int. J. Radiat. Res. 11 (2013) 149-153.

Google Scholar

[92] R. Bedogni, A. Esposito, A. Gentile, M. Angelone, G. Gualdrini, Determination and validation of a response matrix for a passive Bonner sphere spectrometer based on gold foils, Radiat. Meas. 43 (2008) 1104-1107.

DOI: 10.1016/j.radmeas.2007.11.016

Google Scholar

[93] R. Bedogni, P. Ferrari, G. Gualdrini, A. Esposito, Design and experimental validation of a Bonner sphere spectrometer based on Dysprosium activation foils, Radiat. Meas. 45 (2010) 1201-1204.

DOI: 10.1016/j.radmeas.2010.04.005

Google Scholar

[94] S. Paul, S.P. Tripathy, G.S. Sahoo, T. Bandyopadhyay, P.K. Sarkar, Measurement of fast neutron spectrum using CR-39 detectors and a new image analysis program, Nucl. Instrum. Meth. Phys. Res. A 729 (2013) 444-450.

DOI: 10.1016/j.nima.2013.07.083

Google Scholar

[95] S.P. Tripathy, S. Paul, G.S. Sahoo, V. Suman, C. Sunil, D.S. Joshi et al., Measurement of fast neutron spectra from the interaction of 20 MeV protons with thick Be and C targets using CR-39 detector, Nucl. Instrum. Meth. Phys. Res. B 318 (2014).

DOI: 10.1016/j.nimb.2013.09.023

Google Scholar

[96] S. Mayer, M. Boschung, Comparison of different PADC materials for neutron dosimetry, Radiat. Prot. Dosim. 161 (2014) 104-107.

DOI: 10.1093/rpd/nct241

Google Scholar

[97] C. L. Lee, X.L. Zhou, R. J. Kudchadker, F. Harmon, Y. D. Harker, A Monte Carlo dosimetry-based evaluation of the 7Li(p, n)7Be reaction near threshold for accelerator boron neutron capture therapy, Med. Phys. 27(1) (2000) 192-202.

DOI: 10.1118/1.598884

Google Scholar

[98] Ke Guotua, Sun Ziyonga, Shen Fenga, Liu Tiancaia, Li Yiguoa, Zhou Yongmao, The study of physics and thermal characteristics for in-hospital neutron irradiator (IHNI), App. Radiat. Isot. 67 (2009) S234–S237.

DOI: 10.1016/j.apradiso.2009.03.117

Google Scholar

[99] C.L. Tessa, T. Berger, R. Kaderka, D. Schardt, S. Burmeister, J. Labrenz, G. Reitz, M. Durante, Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions, Phys Med Biol. 59 (2014).

DOI: 10.1088/0031-9155/59/8/2111

Google Scholar

[100] R.M. Howell, S. F. Kry, E. Burgett, N. E. Hertel, D. S. Followill, Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators, Med. Phys. 36 (2009) 4027-4038.

DOI: 10.1118/1.3159300

Google Scholar

[101] Matiullah, K. Kudo, X Yanh, Calibration of various types of neutron dosimeters in a Heavy water moderated and monoenergetic neutron fields-II. Experimental, Nucl. Radiat. Meas. 22 (1991) 687-690.

DOI: 10.1016/0969-8078(93)90157-y

Google Scholar

[102] F. H. Séguin, J. A. Frenje, C. K. Li, D. G. Hicks, S. Kurebayashi, J. R. Rygg, B. -E. Schwartz, R. D. Petrasso, Spectrometry of charged particles from inertial-confinement-fusion plasmas, Rev. Scien. Instr. 74 (2003) 975-995.

DOI: 10.1063/1.1518141

Google Scholar

[103] W. Dunn, J.K. Shultis, Exploring Monte Carlo methods. Elsevier, Holland, (2012).

Google Scholar

[104] M. Kralik, A. Aroua, M. Grecescu, V. Mares, T. Novotny, H. Schraube, B. Wiegel, Specification of Bonner sphere system for neutron spectrometry, Radiat. Prot. Dosim. 70 (1997) 279-284.

DOI: 10.1093/oxfordjournals.rpd.a031960

Google Scholar

[105] H.R. Vega-Carrillo, B.W. Wehring, K.G. Veinot, N.E. Hertel, Response matrix for a multisphere spectrometer using a 6LiF thermoluminescent dosimeter. Radiat. Prot. Dosim. 81 (1999) 133-140.

DOI: 10.1093/oxfordjournals.rpd.a032576

Google Scholar

[106] H.R. Vega-Carrillo, E. Manzanares-Acuña, V.M. Hernadez-Davila, G.A. Mercado Sanchez, Response matrix of a multisphere neutron spectrometer with an 3He proportional counter, Rev. Mex. Fis. 51 (2005) 47-52.

Google Scholar

[107] R. Bedogni, A. Esposito, A. Gentile, M. Angelone, G. Gualdrini, Determination and validation of a response matrix for a passive Bonner sphere spectrometer based on gold foils. Radiat. Meas. 43 (2008) 1104-1107.

DOI: 10.1016/j.radmeas.2007.11.016

Google Scholar

[108] H.R. Vega-Carrillo, E. Gallego, A. Lorente, Response matrix of a BSS/6LiI(Eu). Nucl. Tech. 168 (2009) 359-362.

Google Scholar

[109] J.S. Wan, G.N. Zhu, Y. Zhao, N.N. Liu, Q.C. Zhuang, L.X. Zhang, Sh.L. Guo, Computer studies of detection efficiency of fast neturon spectrum based on PADC using the Monte Carlo method, Radiat. Meas. 36 (2003) 163-197.

DOI: 10.1016/s1350-4487(03)00122-7

Google Scholar

[110] J. F Briestmeister (ed), MCNPTM - A general Monte Carlo N-particle transport code, Version4C, Report LA-13709-M Los Alamos National Laboratory, (2000).

Google Scholar

[111] J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids, Pergamon Press, New York, (1985).

Google Scholar

[112] H. Zaki-Dizaji, M. Shahriari, G.R. Etaati, Monte Carlo calculation of CR-39 efficiency for fast neutron detection using a combination of MCNP and SRIM codes, and comparison with experimental results, Radiat. Meas. 42 (2007) 1332-1334.

DOI: 10.1016/j.radmeas.2007.09.004

Google Scholar

[113] A.A.M. Aslam, K. James, S.A. Durrani, A computer program for the development of a fast neutron spectrometer based on electrochemically etched CR-39 detectors with radiator and degraders, Nucl. Track Radiat. Meas. 13 (1987) 131-137.

DOI: 10.1016/1359-0189(87)90024-0

Google Scholar

[114] A.A.M. Aslam, S.A. Durrani, Fast neutron spectrometry based on the registration of proton recoils in electrochemically etched CR-39 detector: Part II Theoretical, Nucl. Track Radiat. Meas. 15 (1988) 503-506.

DOI: 10.1016/1359-0189(88)90190-2

Google Scholar

[115] G. Dajko, Fast neutron spectrometry using CR-39 track detectors. Radiat. Prot. Dosim. 34 (1990) 9-12.

Google Scholar

[116] G. Saint Martin, F. López, O.A. Bernaola, Neutron dosimetry device using PADC nuclear track detectors, J. Radioanal. Nucl. Chem. 287 (2011) 635-638.

DOI: 10.1007/s10967-010-0835-7

Google Scholar

[117] R. Barquero, R. Mendez, H.R. Vega-Carrillo, M.P. Iñiguez, T.M. Edwards, Neutron spectra and dosimetric features around an 18 MV linac accelerator, Health Phys. 88 (2005) 48-58.

DOI: 10.1097/01.hp.0000142500.32040.ac

Google Scholar

[118] MCNPX, Monte Carlo N-particle transport code system for multiparticle and high-energy applications. Version 2. 3. 0, Report LA-UR-02-2607 Los Alamos National Laboratory, (2002).

Google Scholar