Electron Beam Modified Organic Materials and their Applications

Article Preview

Abstract:

The interaction of electron-beam with organic materials (e.g. Polymers, organic solvents, organic acids etc.) is known to modify their physico-chemical properties and, in many cases, these electron-beam modified materials are used for variety of societal applications. In this review article, we first describe the various types of accelerators to generate electron-beams of different energies, i.e. low (0.3 – 0.75 MeV), medium (0.75– 5 MeV) and high (5 – 10 MeV) energies, and emphasis is laid on various accelerators developed by Bhabha Atomic Research Center (BARC), Trombay, India. The energetic electrons on interaction with organic materials create free radicals that lead to modifications in material through various mechanisms such as, cross-linking, scissioning, curing and grafting. An overview of these mechanisms is presented by citing appropriate examples. Applications of electron beam-modified organic materials in different areas including bio-medical, textile, environment protection, electrical, radiation dosimetry, etc. are reviewed. The prospects and challenges involved in the electron-beam processing of organic materials are presented.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 239)

Pages:

72-97

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Chapiro, Radiation Effects in Polymers, in: Encyclopaedia of Materials: Science and Technology ISBN: 0-08-043152-6, Elsevier Ltd. (2004) p.1–8.

Google Scholar

[2] Robert J. Woods, Alexei K. Pikaev, Applied Radiation Chemistry: Radiation Processing, John Wiley & Sons Inc., 1994, p.21.

Google Scholar

[3] R. H. Chilkulwar, S. D. Sharma, N. Chaudhary, S. Acharya, Y. S. Mayya, K. C. Mittal, L. M. Gantayet, Dosimetric evaluation of an indigenously developed 10 MeV industrial electron beam irradiator, Radiat. Meas. 47 (2012) 628-633.

DOI: 10.1016/j.radmeas.2012.06.009

Google Scholar

[4] Andrzej G. Chmielewski, Industrial applications of electron beam flue gas treatment: From laboratory to the practice, Radiat. Phys. Chem. 76 (2007) 1480–1484.

DOI: 10.1016/j.radphyschem.2007.02.056

Google Scholar

[5] Ahmed A. Basfar, Osama I. Fageeha, Noushad Kunnummal, Seraj Al-Ghamdi, Andrzej G. Chmielewski, Janusz Licki, Andrzej Pawelec, Bogdan Tymiński, Zbigniew Zimek, Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels, Fuel 87 (2008).

DOI: 10.1016/j.fuel.2007.09.005

Google Scholar

[6] U. Gohs, H. Dorschner, G. Heinrich, M. Stephan, U. Wagenknecht, R. Bartel, O. Röder, Requirements on Electron Accelerators for Innovative Applications in Polymer Industry, Russian Accelerator Conference (RuPAC), Novosibirsk, Russia, September 10 - 14, (2006).

Google Scholar

[7] Song Cheng, David R. Kerluke, Radiation Processing for Modification of Polymers, Annual Technical Conference of the Society of Plastic Engineering (ANTEC), Nashville, USA, May 4-8, (2003).

Google Scholar

[8] Saleh M. Abdou, R. I. Mohamed, Characterization of structural modifications in poly-tetra- fluoroethylene induced by electron beam irradiation, Journal of Physics and Chemistry of Solids, 63 (2002) 393 – 398.

DOI: 10.1016/s0022-3697(01)00131-7

Google Scholar

[9] Ute Henniges, Merima Hasani, Antje Potthast, Gunnar Westman, Thomas Rosenau, Electron Beam Irradiation of Cellulosic Materials—Opportunities and Limitations, Materials 6 (2013) pp.1584-1598.

DOI: 10.3390/ma6051584

Google Scholar

[10] N. K. Pramanik, R. S. Haldar, Y. K. Bhardwaj, S. Sabharwal, U. K. Niyogi, R. K. Khandal, Radiation processing of Nylon-6 by e- beam for improved properties and performance, Radiat. Phys. Chem. 78 (2009) 199 – 205.

DOI: 10.1016/j.radphyschem.2008.11.004

Google Scholar

[11] J. Raghavan, Evolution of cure, mechanical properties, and residual stress during electron beam curing of a polymer composite, Composites: Part A 40 (2009) 300–308.

DOI: 10.1016/j.compositesa.2008.12.010

Google Scholar

[12] M. M. Nasef, H. Saidi, K. Z. M. Dahlan, Acid-Synergized Grafting of Sodium Styrene Sulfonate on to Electron Beam Irradiated Poly(vinylidene fluoride) Films for Preparation of Fuel Cell Membrane, Journal of Applied Polymer Science 118 (2010).

DOI: 10.1002/app.32407

Google Scholar

[13] F. Liu, B. K. Zhu, Y. Y. Xu, Improving the Hydrophilicity of Poly(vinylidene fluoride) Porous Membranes by Electron Beam Initiated Surface Grafting of AA/SSS Binary Monomers, Applied Surface Science 253 (2006) 2096–2101.

DOI: 10.1016/j.apsusc.2006.04.007

Google Scholar

[14] O. S. Guven¸ M. en, E. Karada˘g, D. Saraydın, A Review on the Radiation Synthesis of Copolymeric Hydrogels for Adsorption and Separation Purposes, Radiat. Phys. Chem. 56 (1999) 381–386.

DOI: 10.1016/s0969-806x(99)00326-6

Google Scholar

[15] H. Yanagishita, J. Arai, T. Sandoh, H. Negishi, D. Kitamoto, T. Ikegami, K. Haraya, Y. Idemoto, N. Koura, Preparation of Polyimide Composite Membranes Grafted by Electron Beam Irradiation, Journal of Membrane Science 232 (2004) 93–98.

DOI: 10.1016/j.memsci.2003.12.002

Google Scholar

[16] K. Fujiwara, Separation Functional Fibers by Radiation Induced Graft Polymerization and Application, Nucl. Instrum. Meth. B 265 (2007) 150–155.

Google Scholar

[17] K. Miyoshi, K. Saito, Preparation of Ion-Exchange Membranes for Salt Production by Electron Beam Induced Graft Polymerization, Nippon Kaisui Gakkai-Shi 63 (2009) 58–62.

Google Scholar

[18] S. M. Ibrahim, Removal of Copper and Chromium Ions from Aqueous Solutions Using Hydrophilic Finished Textile Fabrics, Fibers and Textiles in Eastern Europe 18 (2010) 99–104.

Google Scholar

[19] K. Miyazaki, K. Hisada, T. Hori, Electron Beam Graft Polymerization on Inert Polymer Membranes and Introduction of Thiol Group on the Grafted Side Chains, Fiber 56 (2000) 227– 233.

DOI: 10.2115/fiber.56.227

Google Scholar

[20] S. Das, A. K. Pandey, A. Athawale, V. Kumar, Y. K. Bhardwaj, S. Sabharwal, V. K. Manchanda, Chemical Aspects of Uranium Recovery from Seawater by Amidoximated Electron Beam Grafted Polypropylene Membranes, Desalination 232 (2008) 243–253.

DOI: 10.1016/j.desal.2007.09.019

Google Scholar

[21] M. Nakamura, S. Kiyohara, K. Saito, K. Sugita, T. Sugo, Chiral Separation of dl- Tryptophan Using Porous Membranes Containing Multilayered Bovine Serum Albumin Cross-linked with Glutaraldehyde, Journal of Chromatography A 822 (1998) 53–58.

DOI: 10.1016/s0021-9673(98)00501-9

Google Scholar

[22] A. Bhattacharya, Radiation and industrial polymers, Prog. Polym. Sci. 25 (2000) 371–401.

Google Scholar

[23] N. Sheikh, L. Jalili, F. Anvari, A study on the swelling behaviour of poly (acrylic acid) hydrogels obtained by electron beam crosslinking, Radiat. Phys. Chem. 79 (2010) 735 – 739.

DOI: 10.1016/j.radphyschem.2009.12.013

Google Scholar

[24] H. C. Xang, J. Silvermann, Development and testing of radiation crosslinked poly (ethylene oxide) for sutureless anastomosis, Radiat. Phys. Chem. 25 (1985) 375–381.

DOI: 10.1016/0146-5724(85)90285-7

Google Scholar

[25] H. Kim, J. S. Bae, Modification of polypropylene fibers by electron beam irradiation. I. Evaluation of dyeing properties using cationic dyes, Fibres and Polymers 10 (2009) 320-324.

DOI: 10.1007/s12221-009-0320-5

Google Scholar

[26] A. Alberti, S. Bertini, G. Gastaldi, N. Iannaccone, D. Macciantelli, G. Torri, E. Vismar, Electron beam irradiated textile cellulose fibres.: ESR studies and derivatisation with glycidyl methacrylate (GMA), European Polymer Journal 41 (2005).

DOI: 10.1016/j.eurpolymj.2005.02.016

Google Scholar

[27] D.M. Timus , C. Cincu, D. A. Bradley, G. Craciun, E. Mateescu, Modification of some properties of polyamide-6 by electron beam induced grafting, Applied Radiation and Isotopes 53 (2000) 937 – 944.

DOI: 10.1016/s0969-8043(00)00258-x

Google Scholar

[28] Teo-Ming Ting, Nur'aishikin Jamaludin, Decolorization and decomposition of organic pollutants for reactive and disperse dyes using electron beam technology: Effect of the concentrations of pollutants and irradiation dose, Chemosphere 73 (2008).

DOI: 10.1016/j.chemosphere.2008.05.007

Google Scholar

[29] A. K. Pikaev, Current status of the application of ionizing radiation to environmental protection: I. Ionizing radiation sources, Natural and drinking water purification (A Review), High Energy Chemistry 34 (2000) 1-12.

DOI: 10.1007/bf02761780

Google Scholar

[30] M. H. O. Sampa, Erzsébet Takács, Peter Gehringer, Paulo R. Rela et al., Remediation of polluted waters and wastewater by radiation processing, NUKLEONIKA 52 (2007) 137−144.

Google Scholar

[31] P. Gehringer, H. Eschweiler, H. Fiedler, Ozone electron beam treatment for ground water Remediation, Radiat. Phys. Chem. 46 (1995) 1075-1078.

DOI: 10.1016/0969-806x(95)00324-q

Google Scholar

[32] A. A. Zaki, Naima A. El-Gendy, Removal of metal ions from wastewater using EB irradiation in combination with HA/TiO2/UV treatment, Journal of Hazardous Materials, 271 (2014) 275-282.

DOI: 10.1016/j.jhazmat.2014.02.025

Google Scholar

[33] I. Călinescu, D. Ighigeanu, D. Martin, C. Matei, A. Trifan, C. Oproui, VOCs removal by combined use of electron beam, microwave and catalyst, Revue Roumaine de Chimie 54 (2009) 693–698.

Google Scholar

[34] William L. McLaughlin, Marc F. Desrosiers, Dosimetry systems for radiation processing, Radiat. Phys. Chem. 46 (1995) 1163-1174.

Google Scholar

[35] ASTM ISO / ASTM51538-09, Standard Practice for Use of the Ethanol-Chlorobenzene Dosimetry System, ASTM International, West Conshohocken, PA, 2002, www. astm. org.

Google Scholar