[1]
R. L. Fleischer, P. B. Price and R. M. Walker, Nuclear Tracks in Solids, University of California Press, Berkeley, (1975).
Google Scholar
[2]
D. A. Young, Etching of Radiation Damage in Lithium Fluoride, Nature 182 (1958) 375-377.
DOI: 10.1038/182375a0
Google Scholar
[3]
E. Dartyge, J. P. Duraud, Y. Langevin and M. Maurette, New model of nuclear particle tracks in dielectric minerals, Phys. Rev. B23 (1981) 5213-5229.
DOI: 10.1103/physrevb.23.5213
Google Scholar
[4]
D. Albrecht, P. Armbruster, R. Sphor, M. Roth, K. Schaupert, and H. Stuhrmann, Investigation of Heavy Ion Produced Defect Structures in Insulators by Small Angle Scattering, Appl. Phys. A37 (1985) 37-46.
DOI: 10.1007/bf00617867
Google Scholar
[5]
C. Houpert, M. Hervieu, D. Groult, F. Studer, HREM investigation of GeV heavy ion latent tracks in ferrites, Nucl. Inst. and Meth. Phys. Res. B32 (1988) 393-396.
DOI: 10.1016/0168-583x(88)90243-1
Google Scholar
[6]
L.T. Chadderton, J.P. Biersack and S.L. Koul, Discontinuous Fission Tracks in Crystalline Detectors, Nucl. Tracks and Radiat. Meas. 15 (1988) 31-40.
DOI: 10.1016/1359-0189(88)90097-0
Google Scholar
[7]
V. Chailley, E. Dooryhe'e, S. Bouffard and E. Balanzat, Proc. of 7th Int. Conf. on Radiation Effects in Insulators, Nagoya, Japan (1993).
Google Scholar
[8]
T. A. Tombrello, C. R. Wie, N. Itoh and T. Nakayama, Formation of ion damage tracks, Phys. Lett. 100A (1984) 42-44.
DOI: 10.1016/0375-9601(84)90351-7
Google Scholar
[9]
C.W. White, C.J. McHargue, P.S. Sklad, L.A. Boatner and G.C. Farlow, Ion implantation and annealing of crystalline oxides. Mater. Sci. Rep. 4(2) (1989) 41-146.
DOI: 10.1016/s0920-2307(89)80005-2
Google Scholar
[10]
S.K. Modgil and H.S. Virk, Annealing of fission fragment tracks in inorganic solids, Nucl. Instrum. Meth. B12 (1985) 212-218.
Google Scholar
[11]
H.S. Virk, S.K. Modgil, G. Singh and R.K. Bhatia, Annealing characteristics of heavy ion radiation damage in SSNTDs and concept of single activation energy, Nucl. Instrum. Meth. Phys. Res. B32 (1988) 401-404.
DOI: 10.1016/0168-583x(88)90245-5
Google Scholar
[12]
H.S. Virk, S.K. Modgil and R.K. Bhatia, Activation energy for the annealing of radiation damage in CR-39 : An intrinsic property of detector, Nucl. Tracks Radiat. Meas. 11 (1986) 323-325.
DOI: 10.1016/1359-0189(86)90059-2
Google Scholar
[13]
R. K. Bhatia and H. S. Virk, Annealing study of heavy ion tracks in CR-39, Ind. J. Pure Appl. Phys. 25 (1987) 282-283.
Google Scholar
[14]
R.C. Singh, R.K. Bhatia and H.S. Virk, Annealing study of heavy ion tracks in Makrofol-N using electrochemical etching technique, lnd. J. Pure and Appl. Phys. 26 (1988) 673-674.
Google Scholar
[15]
R.K. Bhatia and H.S. Virk, Heavy ion radiation damage annealing models - A new interpretation, Radiat. Eff. 107 (1989) 167.
DOI: 10.1080/00337578908228561
Google Scholar
[16]
G. Singh and H.S. Virk, Track annealing studies in soda-lime glass detector, GSI Scientific Report, 1987, p.240.
Google Scholar
[17]
A.S. Sandhu, S. Singh and H.S. Virk, Annealing studies of fission tracks in apatite, Ind. J. Pure Appl. Phys. 25 (1987) 97-99.
Google Scholar
[18]
A. S. Sandhu, S. Singh and H.S. Virk, Annealing of fission fragment tracks in micaceous Minerals, Mineralogical J. (Japan) 13 (1987) 254-259.
DOI: 10.2465/minerj.13.254
Google Scholar
[19]
A. S. Sandhu, S. Singh and H.S. Virk, Anisotropic etching and annealing studies of fission tracks in quartz, Mineralogical. J. (Japan) 14 (1988) 1-11.
DOI: 10.2465/minerj.14.1
Google Scholar
[20]
L. Singh, A.S. Sandhu, S. Singh and H.S. Virk, Thermal annealing of heavy ion tracks in muscovite mica, Radiat. Eff. Def. in Solids 108 (1989) 257-266.
DOI: 10.1080/10420158908230314
Google Scholar
[21]
G. Singh and H.S. Virk, Heavy ion radiation damage annealing in glass detectors, Nucl. Instrum. Meth. Phys. Res. B 44 (1989) 103-106.
Google Scholar
[22]
A.S. Sandhu, L. Singh, R.C. Ramola, S. Singh and H.S. Virk, Annealing kinetics of heavy ion radiation damage in crystalline minerals, Nucl. Instum. Meth. Phys. Res. B 46 (1990) 122-124.
DOI: 10.1016/0168-583x(90)90681-j
Google Scholar
[23]
L. Singh, A.S. Sandhu, S. Singh and H.S. Virk, Etching and annealing kinetics of heavy ion tracks in quartz, Nucl. Instrum. Meth. Phys. Res. B 46 (1990) 149-151.
DOI: 10.1016/0168-583x(90)90687-p
Google Scholar
[24]
A.S. Sandhu, R.C. Ramola, S. Singh and H.S. Virk, Fission track annealing in minerals, Nucl. Tracks Radiat. Meas. 17 (1990) 267-269.
DOI: 10.1016/1359-0189(90)90045-y
Google Scholar
[25]
A.S. Sandhu, R.C. Ramola, S. Singh and H.S. Virk, Etching and annealing characteristics of fission tracks in garnet, Ind. J. Pure Appl. Phys. 28 (1990) 522-524.
Google Scholar
[26]
G. Singh and H.S. Virk, Radiation damage annealing models in glass detectors, Radiat. Eff. Def. in Solids 114 (1990) 51-52.
DOI: 10.1080/10420159008213081
Google Scholar
[27]
G. Singh and H.S. Virk H S, Thermal effects of heavy ion radiation damage in glass track detectors, Radiat. Eff. and Def. in Solids 114 (1990) 219-224.
DOI: 10.1080/10420159008213099
Google Scholar
[28]
H.S. Virk, Single activation energy model of radiation damage in solid state nuclear track detectors, Curr. Sci. 61 (1991) 386-390.
Google Scholar
[29]
S. Singh, L. Singh, J. Singh and H.S. Virk, Heavy ion radiation damage annealing in garnet crystal, Nucl. Tracks Radiat. Meas. 19 (1991) 121-126.
DOI: 10.1016/1359-0189(91)90155-b
Google Scholar
[30]
H.S. Virk, Heavy ion radiation damage annealing in track recording insulators and single activation energy model, Nucl. Instrum. Meth. Phys. Res. B 65 (1992) 456-458.
DOI: 10.1016/0168-583x(92)95085-6
Google Scholar
[31]
G. Singh and H.S. Virk (1994), Annealing characteristics of nuclear tracks in glass detectors using optical absorption spectroscopy, J. Radioanal. & Nucl. Chem. 180 (1994) 139 - 144.
DOI: 10.1007/bf02039912
Google Scholar
[32]
H.S. Virk, Single activation energy model of radiation damage in SSNTDs, Radiat. Eff. Def. in Solids 133 (1995) 87-95.
Google Scholar
[33]
G.S. Randhawa and H.S. Virk, Thermal annealing of latent tracks in soda and BP-1 phosphate glasses, Appl. Radiat. Isot. 48 (1997) 447-451.
DOI: 10.1016/s0969-8043(96)00286-2
Google Scholar
[34]
R.K. Jain, G.S. Randhawa, S.K. Bose and H.S. Virk, Study of etching and annealing characteristics of 238U ion tracks in Trifol-TN polycarbonate, J. Phys D: Appl. Phys. 31 (1997) 328-333.
DOI: 10.1088/0022-3727/31/3/012
Google Scholar
[35]
R.K. Jain, G.S. Randhawa, S.K. Bose and H.S. Virk, Etching and annealing kinetics of 238U ion tracks in Makrofol-N plastic, Nucl. Instrum. Meth. Phys. Res. B 140 (1998) 367-372.
DOI: 10.1016/s0168-583x(98)00011-1
Google Scholar
[36]
D. Storzer and G.A. Wagner, Correction of Thermally Lowered Fission Track Ages of Tektites, Earth Planet. Sci. Lett. 5 (1969) 463-468.
DOI: 10.1016/s0012-821x(68)80080-9
Google Scholar
[37]
H.A. Khan and S.A. Durrani, The annealing of latent damage trails in solid-state nuclear track detectors, Nucl. Instrum. Meth. 113 (1973) 51-54.
DOI: 10.1016/0029-554x(73)90476-x
Google Scholar
[38]
K.K. Nagpal, P.P. Mehta and M.L. Gupta, Annealing studies on radiation damages in biotite, apatite and sphene and corrections to fission track ages, Pure Appl. Geophys. 112 (1974a) 131-139.
DOI: 10.1007/bf00875927
Google Scholar
[39]
K.K. Nagpal, P.P. Mehta and M.L. Gupta, (1974a): Fission track ages of cogenetic minerals of the Nellore mica belt of India, Pure Appl. Geophys. 112 (1974b) 140-148.
DOI: 10.1007/bf00875928
Google Scholar
[40]
S.K. Modgil, H.S. Virk, Track annealing studies in glasses and minerals, Nucl. Track Radiat. Meas. 8(1-4) (1984) 355-360.
DOI: 10.1016/0735-245x(84)90120-0
Google Scholar
[41]
H.S. Virk and S.L. Koul, Annealing characteristics of induced fission tracks in micaceous minerals, Curr. Sci. 44 (1975) 341-342.
Google Scholar
[42]
H.S. Virk and S. Singh, Annealing correction to fission track ages of biotites, Ind. J. Pure Appl. Phys. 14 (1976) 421-422.
Google Scholar
[43]
S. Singh and H.S. Virk, Annealing correction to the fission track ages of phlogopites, Curr. Sci. 46 (1977) 376-378.
Google Scholar
[44]
S.L. Koul and H.S. Virk, Thermal annealing behaviour of fission tracks in apatite crystal found at Borra mine, Vishakhapatnam District (India), Mineralogical J. (Japan) 9 (1978) 55-63.
DOI: 10.2465/minerj.9.55
Google Scholar
[45]
G. Poupeau, J. Carpena, A. Chambaudet, and Ph. Romary, Fission track plateau-age dating, In: H. Francois et al. (eds. ), Proceedings of Solid State Nuclear Track Detectors Conference, Lyon (1979), Pergamon Press, Oxford, 1980, pp.966-977.
DOI: 10.1016/b978-0-08-025029-8.50123-2
Google Scholar
[46]
S. Singh, P.S. Suri and H.S. Virk, Correction for thermally affected fission tracks in glass (obsidian) by age plateau method, Curr. Sci. 50 (1981) 626-627.
Google Scholar
[47]
G.A. Wagner and P. Van den Haute, Fission Track Dating, Springer, 1992, pp.1-285. ISBN: 978-94-010-5093-7 (Print) 978-94-011-2478-2 (Online).
DOI: 10.1007/978-94-011-2478-2_3
Google Scholar
[48]
R.L. Fleischer, P.B. Price, E.M. Symes and D.S. Miller, Fission track ages and track annealing behaviour of some micas, Science 143 (1964) 349-351.
DOI: 10.1126/science.143.3604.349
Google Scholar
[49]
R.L. Fleischer, P.B. Price and R.M. Walker, Effects of temperature, pressure, and ionization on the formation and stability of fission tracks in minerals and glasses, J. Geophys. Res. 70 (1965) 1497-1502.
DOI: 10.1029/jz070i006p01497
Google Scholar
[50]
D. Storzer, Fission track dating of volcanic glasses and the thermal history of rocks, Earth Planet. Sci. Lett. 8 (1070) 55-60.
DOI: 10.1016/0012-821x(70)90099-3
Google Scholar
[51]
C.W. Naeser, J.C. Engels and F.C.W. Dodge, Fission track annealing and age determination of epidote minerals, J. Geophys. Res. 75 (1970) 1579-1584.
DOI: 10.1029/jb075i008p01579
Google Scholar
[52]
C.W. Naeser, Fission-track dating and geologic annealing of fission tracks, in: E. Jager and J. C. Hunziker (eds. ), Lectures in Isotope Geology, Springer-Verlag, Heidelberg, pp.154-169.
DOI: 10.1007/978-3-642-67161-6_10
Google Scholar
[53]
S.A. Durrani and H.A. Khan, Annealing of fission tracks in tektites: corrected ages of bediasites, Earth Planet Sci. Lett. 9 (1970) 431-445.
DOI: 10.1016/0012-821x(70)90010-5
Google Scholar
[54]
E. Bertal, T.D. Mark and M. Pahl, A new method for the measurement of the mean etchable fission track length and of extremely high fission track densities in minerals, Nucl. Track Detection 1 (1970) 123-126.
DOI: 10.1016/0145-224x(77)90005-9
Google Scholar
[55]
G.M. Reimer, G.A. Wagner and B.S. Carpenter, The thermal stability of fission tracks in the standard reference material glass standard (National Bureau of Standards), Radiat. Effects 15 (1972) 273-274.
DOI: 10.1080/00337577208234703
Google Scholar
[56]
J. Burchart, T. Butkiewicz, M. Dakowski, and J. Galazka-Friedman, Fission track retention in minerals as a function of heating time during isothermal experiments: a discussion, Nucl. Tracks 3 (1979) 109-117.
DOI: 10.1016/0191-278x(79)90003-9
Google Scholar
[57]
T.D. Mark, R. Vartanian, F. Purtscheller and M. Pahl, Fission track annealing and application to the dating of Austrian sphene, Acta Phys. Austriaca 53 (1981) 45-59.
Google Scholar
[58]
P.P. Mehta, and Rama, Annealing effects in muscovite and their influence on dating by fission track method, Earth Planet. Sci. Lett. 7 (1969) 82-86.
DOI: 10.1016/0012-821x(69)90017-x
Google Scholar
[59]
L.C. Calk, and C.W. Naeser, The thermal effect of a basalt intrusion on fission tracks in quartz monzonite, J. Geol. 81 (1973) 189-198.
DOI: 10.1086/627834
Google Scholar
[60]
Y. Cantelaube, Thermal fading of fission tracks at variable temperature: Applications to geochronology, Nucl. Tracks 6(4 (1982) 143-160.
DOI: 10.1016/0735-245x(82)90013-8
Google Scholar
[61]
W. Gentner, D. Storzer and G.A. Wagner, New fission track ages of tektites and related glasses, Geochim. Cosmochim. Acta 33 (1969) 1075-1081.
DOI: 10.1016/0016-7037(69)90063-5
Google Scholar
[62]
S.A. Durrani, and R.K. Bull, Solid State Nuclear Track Detection (Principles, Methods and Applications), Pergamon Press, Oxford, (1987).
Google Scholar
[63]
C.W. Naeser and H. Faul, Fission-Track Annealing in Apatite and Sphene, J. Geophys. Res. 74 (1969) 705-710.
DOI: 10.1029/jb074i002p00705
Google Scholar
[64]
E. Mark, M. Pahl, F. Purtscheller and T.D. Mark, Thermische Ausheilung von UranSpaltspuren in Apatiten, Alterskorrekturen und Beitrage zur Geothermochronologie, Tschermarks Min. Petr. Mitt. 20 (1973) 131-154.
DOI: 10.1007/bf01081388
Google Scholar
[65]
M.S.M. Mantovani, Variations of characteristics of fission tracks in muscovites by thermal effects, Earth Planet. Sci. Lett. 24 (1974) 311-316.
DOI: 10.1016/0012-821x(74)90110-1
Google Scholar
[66]
R. Gold, J.H. Roberts and F.H. Ruddy, Annealing phenomena in solid state track recorders, Nucl. Tracks 5 (1981) 253-264.
DOI: 10.1016/0191-278x(81)90003-2
Google Scholar
[67]
E. Dartyge, Ph.D. Thesis, Univeristeꞌ de Paris XI, Orsay, 1979 (unpublished).
Google Scholar
[68]
E. Mark and T.D. Mark, Comments on the paper entitled 'Fission track retention in minerals as a function of heating time during isothermal experiments', by Burchart et al., Nucl. Tracks 5 (1981) 325-328.
DOI: 10.1016/0191-278x(81)90012-3
Google Scholar
[69]
E. Mark and T.D. Mark, Fission track temperature age theory, Nucl. Tracks Suppl. 3 (1982) 389-394.
DOI: 10.1016/b978-0-08-026509-4.50085-4
Google Scholar
[70]
E. Dartyge, J.P. Daraud, Y. Langevin and M. Maurette, New model of nuclear particle tracks in dielectric minerals, Phys. Rev. B23 (1981) 5213-5229.
DOI: 10.1103/physrevb.23.5213
Google Scholar
[71]
G. J. Dienes and A. C. Damask, Point Defects in Metals, Gordon and Breach Sci. Publishers, N. York, (1963).
Google Scholar
[72]
P.F. Green, I.R. Duddy, A.J.W. Gleadow, P.R. Tingate and G.M. Laslett, Thermal annealing of fission tracks in apatite: 1. A qualitative description, Chemical Geology 59 (1986) 237-253.
DOI: 10.1016/0168-9622(86)90074-6
Google Scholar
[73]
G.M. Laslett, P.F. Green, I.R. Duddy and A.J.W. Gleadow, Thermal annealing of fission tracks in apatite: 2. A quantitative analysis, Chemical Geology 65 (1987) 1-13.
DOI: 10.1016/0168-9622(87)90057-1
Google Scholar
[74]
M. H. Salamon, P. B. Price and J. Drach, Thermal annealing of nuclear tracks in polycarbonate plastic, Nucl. Instrum. Meth. Phys. Res. B17 (1986) 173-176.
Google Scholar
[75]
P.F. Green, I.R. Duddy, A.J.W. Gleadow and P.R. Tingate, Fission-track annealing in apatite: track length measurements and the form of Arrhenius plot, Nucl. Tracks 10 (1985) 323-328.
DOI: 10.1016/0735-245x(85)90121-8
Google Scholar
[76]
K.K. Sharma, K.D. Bal, R. Prashad, Nand Lal and K.K. Nagpal, Palaeo-uplift and cooling rates from various orogenic belts of India, as revealed by radiometric ages, Tectonophysics 70 (1980) 135.
DOI: 10.1016/0040-1951(80)90024-4
Google Scholar
[77]
J. Carpena, U. Pognante and B. Lombardo, New constraints for the timing of the alpine metamorphism in the internal ophiolitic nappes from the western Alps as inferred from fission- track data, Tectnonophysics 127 (1986) 117-127.
DOI: 10.1016/0040-1951(86)90082-x
Google Scholar
[78]
M. Dakowski,J. Burchart and J. Galazka, Experimental formula for thermal fading of fission tracks in minerals and natural glasses, Bull. Acad. Polan. Sci., Ser. Sci. Terre 22 (1974) 11-17.
Google Scholar
[79]
T.D. Mark, M. Phal and R. Vartanian, Fission track annealing and fission track age- temperatrue relationship in sphene. Nucl. Technol. 52 (1981) 295-305.
DOI: 10.13182/nt81-a32672
Google Scholar
[80]
P.B. Price, G. Gerbier, H.S. Park and M.H. Salamon, Systematics of annealing of tracks of relativistic nuclei in phosphate glass detectors, Nucl. Instrum. Methd. Phys. Res. B27 (1987) 53-55.
DOI: 10.1016/0168-583x(87)90035-8
Google Scholar
[81]
H.S. Virk, S.K. Modgil and G. Singh, Fission track annealing models and the concept of a single activation energy, Nucl. Instrum. Meth. Phys. Res. B 21 (1987) 68-71.
Google Scholar
[82]
H.A. Khan, N.A. Khan, K. Jamil and R. Brandt, Annealing of Heavy Ion Latent Damage Trails in Muscovite Mica and CR-39 Plastic Track Detectors, Nucl. Tracks Radiat Meas. 8 (1-4) (1984) 377-380.
DOI: 10.1016/0735-245x(84)90124-8
Google Scholar
[83]
M.A. Rana, I.E. Qureshi, S. Manzoor, E.U. Khan, M.I. Shahzad, G. Sher, Activation energy for the annealing of nuclear tracks in SSNTDs, Nuclear Instruments and Methods in Physics Research B 179 (2001) 249-254.
DOI: 10.1016/s0168-583x(01)00574-2
Google Scholar
[84]
M.A. Rana, I.E. Qureshi, E.U. Khan, S. Manzoor, M.I. Shahzad, H.A. Khan, Thermal annealing of fission fragment radiation damage in CR-39, Nucl. Instr. and Meth. B 170 (2000) 149-155.
DOI: 10.1016/s0168-583x(00)00154-3
Google Scholar
[85]
M.K. Rahn, M.T. Brandon, G.E. Batt, J.I. Garver, A zero-damage model for fission track annealing in zircon, American Mineralogist 89 (4) (2004) 473-484.
DOI: 10.2138/am-2004-0401
Google Scholar
[86]
R.F. Galbraith, and G.M. Laslett, Statistical modelling of thermal annealing of fission tracks in zircon. Chemical Geology, 140 (1997) 123–135.
DOI: 10.1016/s0009-2541(97)00016-8
Google Scholar
[87]
T. Tagami, R.F. Galbraith, R. Yamada, G.M. Laslett, (1998).
Google Scholar
[88]
R. Yamada, T. Tagami, S. Nishimura, H. Ito, H. Annealing kinetics of fission tracks in zircon: an experimental study. Chemical Geology, 122 (1995) 249–258.
DOI: 10.1016/0009-2541(95)00006-8
Google Scholar