[1]
W. Wołczyński, et al., Morphological characteristics of multi-layer/substrate systems, Mater. Charact. 56 (2006) 274-280.
Google Scholar
[2]
D. Kopyciński, E. Guzik, Intermetallic phases formation in hot dip galvanizing process, Solid State Phenom. 197 (2013) 77-82.
DOI: 10.4028/www.scientific.net/ssp.197.77
Google Scholar
[3]
H. Kania, Kinetics of Growth and Structure of Coatings Obtained on Sandelin Steels in the High-Temperature Galvanizing Process, Solid State Phenom. 212 (2014) 127-132.
DOI: 10.4028/www.scientific.net/ssp.212.127
Google Scholar
[4]
H. Kania, P. Liberski, Synergistic influence of Al, Ni, Bi and Sn addition to a zinc bath upon growth kinetics and the structure, IOP Conf. Series: Mater. Sci. Eng. 35 (2012) 012004.
DOI: 10.1088/1757-899x/35/1/012004
Google Scholar
[5]
H. Kania, P. Liberski, Synergistic influence of the addition of Al, Ni and Pb to a zinc bath upon growth kinetics and structure of coatings, Solid State Phenom. 212 (2014) 115-120.
DOI: 10.4028/www.scientific.net/ssp.212.115
Google Scholar
[6]
J. Mendala, Liquid metal embrittlement of steel with galvanized coatings, IOP Conf. Series: Mater. Sci. Eng. 35 (2012) 012002.
DOI: 10.1088/1757-899x/35/1/012002
Google Scholar
[7]
J. Mendala, The possibility of the LME phenomenon in elements subjected to metallization in Zn bath with Bi addition, Solid State Phenom. 226 (2015) 167-172.
DOI: 10.4028/www.scientific.net/ssp.226.167
Google Scholar
[8]
D. Kopyciński, E. Guzik, Growth of protective coating in the galvanizing of ductile iron castings, Archives of Foundry Engineering 6 (2006) 401-408.
Google Scholar
[9]
H. Kania, P. Liberski, The Structure and Growth Kinetics of Zinc Coatings on Link Chains Produced of the 23MnNiCrMo5-2 Steel, Solid State Phenom. 212 (2014) 145-150.
DOI: 10.4028/www.scientific.net/ssp.212.145
Google Scholar
[10]
P. Liberski et al., Corrosion resistance of zinc coatings obtained in high-temperature baths Mater. Sci+ 39 (2003) 652-657.
DOI: 10.1023/b:masc.0000023504.84007.42
Google Scholar
[11]
J. Mendala, The influence of Si addition in 55AlZn bath on the coating structures obtained in the batch hotdip metallization, IOP Conf. Series: Mater. Sci. Eng. 22 (2011) 012005.
DOI: 10.1088/1757-899x/22/1/012005
Google Scholar
[12]
A. Fornalczyk et. al., The morphology of corrosion products in FeAl alloys after heat-resistance tests at different temperatures, Solid State Phenom. 227 (2015) 409-412.
DOI: 10.4028/www.scientific.net/ssp.227.409
Google Scholar
[13]
P. Liberski et. al., The structure and corrosion resistance of Zn-Al coatings obtained in batch double dip process, Physico Chemical Mechanics of Materials 5 (2006) 673-679.
Google Scholar
[14]
H. Kania, M. Bierońska, Corrosion resistance of Zn-31AlMg coatings obtained by batch hot dip method, Solid State Phenom. 212 (2014) 167-172.
DOI: 10.4028/www.scientific.net/ssp.212.167
Google Scholar
[15]
R. Michalik, The effect of modification with rare earth elements on ZnAl22Cu3 alloy structure and mechanical properties, Arch. Metall. Mater. 58 (2013) 49-53.
DOI: 10.2478/v10172-012-0149-6
Google Scholar
[16]
R. Michalik R., Influence of solutionizing on structure and mechanical properties of ZnAl40Cu3 alloy, Materialwiss. und Werkst. 45 (2014) 354-360.
Google Scholar
[17]
K. Nowacki et al., The properties of ZnAlMg alloys for batch hot dip metallization, Proc. of XXIII Conference TPMUM 2015, Solid State Phenom. (2015) in this issue.
DOI: 10.4028/www.scientific.net/ssp.246.143
Google Scholar