The Effect of Adsorbed Molecules on Electronic Structure and Magnetic Properties of Nanographites

Article Preview

Abstract:

The results of investigation of changes in electronic structure and magnetic properties of multilayer graphene nanoclusters (nanographites) occurring during their interaction with adsorbed chlorine molecules are presented. The found reversible decrease in the density of states of current carriers D(EF) at the Fermi energy EF can be explained by the spin-splitting of edge π-electron states in nanographites induced by the enhancement of electron-electron interactions due to increase of the D(EF) at partial transfer of the electron density from nanographites to chlorine adatoms. The revealed irreversible decrease in the concentration of localized spins indicates that the electron spins of 3p-orbitals of chlorine and unpaired (dundling) σ-orbitals of edge carbon atoms are coupled also at this interaction, i.e. the edge covalent compound of nanographite with chlorine forms. Character of changes in the spin-relaxation rate of π-electrons depending on the amount of adsorbed chlorine molecules and on temperature in chlorinated samples are also consistent with the above model of nanographite-chlorine interaction.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 247)

Pages:

111-117

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Natelson, Nanostructures and Nanotechnology, Cambridge University Press, Cambridge (United Kingdom), 2015, 639 p.

Google Scholar

[2] A. Krueger, Carbon materials and nanotechnology, WILEY-VCH Verlag GmbH, Weinheim (Germany), 2010, 475 p.

Google Scholar

[3] T. Enoki, T. Ando, Physics and chemistry of graphene: graphene to nanographene, Pan Stanford Publishing Pte Ltd., Singapore / Singapore, 2013, 476 p.

Google Scholar

[4] M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn., 65 (1996) 1920-(1923).

DOI: 10.1143/jpsj.65.1920

Google Scholar

[5] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: nanometer size effect and edge shape dependence, Phys. Rev. В, 54 (1996) 17954-17961.

DOI: 10.1103/physrevb.54.17954

Google Scholar

[6] K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B, 59 (1999) 8271-8282.

DOI: 10.1103/physrevb.59.8271

Google Scholar

[7] A. M. Ziatdinov, Structure and properties of nanographites and their compounds, Ross. Khim. Zh. (Zh. Ross. Khim. O-va im D.I. Mendeleeva), XLVIII (2004) 5-11 [Mendeleev Chem. J. (Engl. Transl. ), XLVIII (2004), 5-11].

Google Scholar

[8] Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, H. Fukuyama, Scanning tunneling microscopy and spectroscopy studies of graphite edges, Appl. Surf. Sci., 241 (2005) 43-48.

DOI: 10.1016/j.apsusc.2004.09.091

Google Scholar

[9] Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B, 71 (2005) 193406 (4 p. ).

DOI: 10.1103/physrevb.71.193406

Google Scholar

[10] Z. Klusek, W. Kozlowski, Z. Waqar, S. Datta, J.S. Burnell-Gray, I.V. Makarenko, N.R. Gall, E.V. Rutkov, A. Ya. Tontegode, A.N. Titkov, Local electronic edge states of grapheme layer deposited on Ir(111) surface studied by STM/CITS, Appl. Surf. Sci., 252 (2005).

DOI: 10.1016/j.apsusc.2005.02.083

Google Scholar

[11] M. Ziatdinov, S. Fujii, K. Kusakabe, M. Kiguchi, T. Mori, T. Enoki, Vizualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination, Phys. Rev. B, 87 (2013) 115427 (7 p. ).

DOI: 10.1103/physrevb.87.115427

Google Scholar

[12] M. Ohtsuka, S. Fujii, M. Kiguchi, T. Enoki, Electronic state of oxidized nanographene edge with atomically sharp zigzag boundaries, ACS Nano, 7 (2013) 6868-6874.

DOI: 10.1021/nn402047a

Google Scholar

[13] S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, T. Enoki, Role of edge geometry and chemistry in the electronic properties of graphene nanostructures, Faraday Discuss., 173 (2014) 173-199.

DOI: 10.1039/c4fd00073k

Google Scholar

[14] M. Ziatdinov, S. Fujii, M. Ohtsuka, K. Kusakabe, M. Kiguchi, T. Mori, T. Enoki, Direct imaging of monovacancy-hydrogen complexes in a single graphitic layer, Phys. Rev. B, 89 (2014) 115405 (15 p. ).

DOI: 10.1103/physrevb.89.155405

Google Scholar

[15] X. Zhan, O.V. Yazyev, J. Feng, L. Xie, C. Tao, Y. -C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S.G. Louie, H. Dai, M.F. Crommie, Experimentally engineering the edge termination of graphene nanoribbons, ACS Nano, 7 (2013) 198-202.

DOI: 10.1021/nn303730v

Google Scholar

[16] L. Talirz, H. Sode, J. Cai, P. Ruffiex, S. Blankenburg, R. Jafaar, R. Berger, X. Feng, K. Mullen, D. Passerone, R. Fasel, C.A. Pignedoli, Termini of bottom-up fabricated graphene nanoribbons, J. Am. Chem. Soc., 135 (2013) 2060-(2063).

DOI: 10.1021/ja311099k

Google Scholar

[17] A. M. Ziatdinov, Nanographites, their compounds and film structures, Russ. Chem. Bull., Int. Ed., 64 (2015) 1-14.

DOI: 10.1007/s11172-015-0812-y

Google Scholar

[18] Y. -W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature, 444 (2006) 347-349.

DOI: 10.1038/nature05180

Google Scholar

[19] O. V. Yazyev and M. I. Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices, Phys. Rev. Lett., 100 (2008) 047209 (5 p. ).

DOI: 10.1103/physrevlett.100.047209

Google Scholar

[20] K. Sasaki, J. Jiang, R. Saito, S. Onari, Y. Tanaka, Theory of superconductivity of carbon nanotubes and graphene, J. Phys. Soc. Jpn., 76 (2007) 033702 (4 p. ).

DOI: 10.1143/jpsj.76.033702

Google Scholar

[21] Yu. M. Nikolenko, A. M. Ziatdinov, Russ. J. Inorg. Chem. (Engl. Transl. ), 57 (2012) 1436-1442 [Zh. Neorg. Khim., 57 (2012) 1528-1534].

Google Scholar

[22] N. S. Saenko, A. M. Ziatdinov, Multilayer graphene nanoclusters: structure, electronic and magnetic properties, Solid State Phenomena, this volume (2016).

DOI: 10.4028/www.scientific.net/ssp.247.76

Google Scholar

[23] J. Weil, J. R. Bolton, Electron paramagnetic resonance: elementary theory and practical applications, Wiley-Interscience, New Jersey (USA), 2007, 664 p.

Google Scholar

[24] M. Yang, L. Zhou, J. Wang, Z. Liu, Z. Liu, Evolutionary chlorination of graphene: from charge-transfer complex to covalent bonding and nonbonding, J. Phys. Chem. C, 116 (2012) 844-850.

DOI: 10.1021/jp2088143

Google Scholar