RHEED Study of the Texture in Polycrystalline Films of Magnetite Grown on Oxidized Silicon Surface

Article Preview

Abstract:

Polycrystalline films of magnetite (Fe3O4) with thickness of 75 nm were grown on SiO2/Si (001) surface by reactive deposition of Fe in O2 atmosphere. The growth of Fe3O4 films was conducted with the different oxygen pressures. The structure of films was monitored by reflection high-energy electron diffraction (RHEED) during the film growth. It was found that there is a range of oxygen pressure in which the growth of only textured Fe3O4 film takes place. Reactive deposition of Fe at lower oxygen pressure results in a growth of Fe3O4 film without a texture. In contrast at the deposition with higher oxygen pressure the texture in the Fe3O4 film remains but the appearance of hematite (α-Fe2O3) is observed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 247)

Pages:

118-123

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Zhang, and S. Satpathy, Electron states, magnetism, and the Verwey transition in magnetite, Phys. Rev. B 44 (1991) 13319.

DOI: 10.1103/physrevb.44.13319

Google Scholar

[2] S. Tiwari, R. Prakash, R.J. Choudhary, D.M. Phase, Oriented growth of Fe3O4 thin film on crystalline and amorphous substrates by pulsed laser deposition, J. Phys. D: Appl. Phys. 40 (2007) 4943.

DOI: 10.1088/0022-3727/40/16/028

Google Scholar

[3] M.L. Parames, J. Mariano, Z. Viskadourakis, N. Popovici, M.S. Rogalski, J. Giapintzakis, O. Conde, PLD of Fe3O4 thin films: influence of background gas on surface morphology and magnetic properties, Appl. Surf. Sci. 252 (2006) 4610-4614.

DOI: 10.1016/j.apsusc.2005.07.090

Google Scholar

[4] C. Boothman, A.M. Sanchez, S. van Dijken, Structural, magnetic, and transport properties of Fe3O4/Si(111) and Fe3O4/Si(001), J. Appl. Phys. 101 (2007) 123903-(1-7).

DOI: 10.1063/1.2745290

Google Scholar

[5] S. Jain, A.O. Adeyeye, C.B. Boothroyd, Electronic properties of half metallic Fe3O4 films, J. Appl. Phys. 97 (2005) 093713-(1-6).

DOI: 10.1063/1.1889247

Google Scholar

[6] H. Xiang, F. Shi, M.S. Rzchowski, P.M. Voyles, Y.A. Chang, Epitaxial growth and magnetic properties of Fe3O4 films on TiN buffered Si(001), Si(110), and Si(111) substrates, Appl. Phys. Lett. 97 (2010) 092508-(1-3).

DOI: 10.1063/1.3484278

Google Scholar

[7] C. Park, Y. Peng, J-G. Zhu, D.E. Laughlin, R.M. White, Magnetoresistance of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature, J. Appl. Phys. 97 (2005) 10C303-(1-3).

DOI: 10.1063/1.1847853

Google Scholar

[8] X. Wang, Y. Sui, J. Tang, C. Wang, X. Zhang, Z. Lu, Z. Liu, W. Su, X. Wei, R. Yu, Amplification of magnetoresistance of magnetite in an Fe3O4–SiO2–Si structure, Appl. Phys. Lett. 92 (2008) 012122-(1-3).

DOI: 10.1063/1.2823609

Google Scholar

[9] Z.L. Lu, M.X. Xu, M.Q. Zou, S. Wang, X.C. Liu, Y.B. Lin, J.P. Xu, Z.H. Lu, J.F. Wang, L.Y. Lv, F.M. Zhang, Y.W. Du, Large low field magnetoresistanse in ultrathin nanocrystalline magnetite Fe3O4 films at room temperature, Appl. Phys. Lett. 91 (2007).

DOI: 10.1063/1.2783191

Google Scholar

[10] Y. Kim, M. Oliveria, Magnetic properties of reactively sputtered Fe1-xO and Fe3O4 thin films, J. Appl. Phys. 75 (1994) 431-437.

DOI: 10.1063/1.355869

Google Scholar

[11] W.B. Mi, Hui Liu, Z.Q. Li, P. Wu, E.Y. Jiang, H.L. Bai, Evolution of structure, magnetic and transport properties of sputtered films from Fe to Fe3O4, J. Phys. D: Appl. Phys. 39 (2006) 5109-5115.

DOI: 10.1088/0022-3727/39/24/002

Google Scholar

[12] G. Zhang, C. Fan, L. Pan, F. Wang, P. Wu, H. Qiu, Y. Gu, Y. Zhang, Magnetic and transport properties of magnetite thin films, J. Magn. Magn. Mater. 293 (2005) 737-745.

DOI: 10.1016/j.jmmm.2004.11.529

Google Scholar

[13] V.V. Balashev, V.V. Korobtsov, T.A. Pisarenko, L.A. Chebotkevich, Growth of Fe3O4 films on the Si(111) surface covered by a thin SiO2 layer, Tech. Phys. 56 (2011) 1501-1507.

DOI: 10.1134/s1063784211100033

Google Scholar

[14] V.A. Vikulov, V.V. Balashev, T.A. Pisarenko, A.A. Dimitriev, V.V. Korobtsov, The effect of synthesis temperature on structural and magnetic properties of Fe3O4 films grown on the SiO2/Si(001) surface, Tech. Phys. Lett. 38 (2012) 336-339.

DOI: 10.1134/s1063785012040141

Google Scholar

[15] E.J.W. Verwey, E.L. Heilmann, Physical properties and cation arrangement of oxides with spinel structures, J. Chem. Phys. 15 (1947) 174-180.

DOI: 10.1063/1.1746464

Google Scholar

[16] Y. Bando, S. Horio, T. Takada, Reactive condensation and magnetic properties of iron oxide films, Jap. J. Appl. Phys. 17 (1978) 1037-1042.

DOI: 10.1143/jjap.17.1037

Google Scholar

[17] F. Tang, T. Parker, G. -C. Wang, T. -M. Lu, Surface texture evolution of polycrystalline and nanostructured films: RHEED surface pole figure analysis, J. Phys. D: Appl. Phys. 40 (2007) R427-R439.

DOI: 10.1088/0022-3727/40/23/r01

Google Scholar

[18] T.A. Pisarenko, V.V. Korobtsov, V.A. Vikulov, A.A. Dimitriev, V.V. Balashev, The influence of seed layer on growth of magnetite films on the SiO2/Si(001) surface, Solid State Phenom. 213 (2014) 51-55.

DOI: 10.4028/www.scientific.net/ssp.213.51

Google Scholar

[19] M. -F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, Optical properties of iron oxide (a-Fe2O3) thin films deposited by the reactive evaporation of iron, J. Alloys Compd. 521 (2012) 178-182.

DOI: 10.1016/j.jallcom.2012.01.115

Google Scholar

[20] I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21(5) (2003) S117-S128.

DOI: 10.1116/1.1601610

Google Scholar

[21] D. Yokoyama, K. Namiki, H. Fukasawa, J. Miyazaki, K. Nomura, Y. Yamada, Mossbauer study of films produced by laser deposition of iron oxides, J. Radioanal. Nucl. Chem. 272(3) (2007) 631-638.

DOI: 10.1007/s10967-007-0637-8

Google Scholar

[22] X. Huang, J. Ding, The structure, magnetic and transport properties of Fe3O4 thin films on different substrates by pulsed laser deposition, J. Korean Phys. Soc. 62 (2013) 2228-2232.

DOI: 10.3938/jkps.62.2228

Google Scholar