Basic Concepts of Solar-to-Chemical Energy Conversion by Oxide Semiconductors

Article Preview

Abstract:

The purpose of this work is to consider the basic concepts on the present state of understanding of photocatalytic energy conversion using oxide semiconductors. This work also considers the approaches in derivation of theoretical models that allow explanation of the effect of properties on the performance of oxide-based photocatalysts in photocatalytic water oxidation. In this work we show that the performance of photocatalytic systems must be considered in terms of a range of the key performance-related properties (KPPs) that, in addition to the band gap, include the concentration of surface active sites, charge transport and Fermi level. Taking into account that all these KPPs are related to defect disorder, defect engineering may be applied in processing oxide semiconductors with optimal properties that are required to exhibit maximised performance in solar-to-chemical energy conversion.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 253)

Pages:

1-10

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. K. Nowotny, J. Nowotny, Eds., Solid state chemistry and photocatalysis of titanium dioxide. TransTech publications, Zurich, (2010).

Google Scholar

[2] D. E. Scaife, Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energ., 25 (1980) 41-54.

DOI: 10.1016/0038-092x(80)90405-3

Google Scholar

[3] M. A. Butler, D. S. Ginley, Principles of photoelectrochemical, solar energy conversion. J. Mater. Sci., 15 (1980) 1-19.

Google Scholar

[4] N. G. Park, J. van de Lagemaat, A. J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B, 104 (2000) 8989-8994.

DOI: 10.1021/jp994365l

Google Scholar

[5] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395 (1998) 583-585.

DOI: 10.1038/26936

Google Scholar

[6] G. Smestad, C. Bignozzi, R. Argazzi, Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Sol. Energ. Mat. Sol. Cells, 32 (1994) 259-272.

DOI: 10.1016/0927-0248(94)90211-9

Google Scholar

[7] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33.

Google Scholar

[8] T. Bak, J. Nowotny, N. J. Sucher, E. Wachsman, Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (rutile) with oxygen, water, and bacteria. J. Phys. Chem. C, 115 (2011) 15711-15738.

DOI: 10.1021/jp2027862

Google Scholar

[9] M. Ni, M. K. Leung, D. Y. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustainable Energy Rev., 11 (2007) 401-425.

DOI: 10.1016/j.rser.2005.01.009

Google Scholar

[10] W. J. Youngblood, S. -H. A. Lee, K. Maeda, T. E. Mallouk, Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res., 42 (2009) 1966-(1973).

DOI: 10.1021/ar9002398

Google Scholar

[11] K. J. Young, L. A. Martini, R. L. Milot, R. C. Snoeberger Iii, V. S. Batista, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, Light-driven water oxidation for solar fuels. Coord. Chem. Rev., 256 (2012) 2503-2520.

DOI: 10.1016/j.ccr.2012.03.031

Google Scholar

[12] A. J. Nozik, J. Miller, Introduction to solar photon conversion. Chem. Rev., 110 (2010) 6443-6445.

DOI: 10.1021/cr1003419

Google Scholar

[13] D. K. Zhong, J. Sun, H. Inumaru, D. R. Gamelin, Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc., 131 (2009) 6086-6087.

DOI: 10.1021/ja9016478

Google Scholar

[14] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414 (2001) 625-627.

DOI: 10.1038/414625a

Google Scholar

[15] G. P. Smestad, A. Steinfeld, Review: Photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind. Eng. Chem. Res., 51 (2012) 11828-11840.

DOI: 10.1021/ie3007962

Google Scholar

[16] J. Nowotny, C. C. Sorrell, L. R. Sheppard, T. Bak, Solar-hydrogen: Environmentally safe fuel for the future. Int. J. Hydrogen Energy, 30 (2005) 521-544.

DOI: 10.1016/j.ijhydene.2004.06.012

Google Scholar

[17] R. W. Matthews, Solar-electric water purification using photocatalytic oxidation with TiO2 as a stationary phase. Sol. Energ., 38 (1987) 405-413.

DOI: 10.1016/0038-092x(87)90021-1

Google Scholar

[18] R. W. Matthews, Purification of water with near—U.V. Illuminated suspensions of titanium dioxide. Water Res., 24 (1990) 653-660.

DOI: 10.1016/0043-1354(90)90199-g

Google Scholar

[19] R. W. Matthews, Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand. Water Res., 25 (1991) 1169-1176.

DOI: 10.1016/0043-1354(91)90054-t

Google Scholar

[20] X. Z. Li, H. Liu, L. F. Cheng, H. J. Tong, Photocatalytic oxidation using a new catalyst TiO2 microspherefor water and wastewater treatment. Environ. Sci. Technol., 37 (2003) 3989-3994.

DOI: 10.1021/es0262941

Google Scholar

[21] A. Fernández, G. Lassaletta, V. M. Jiménez, A. Justo, A. R. González-Elipe, J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl Catal B, 7 (1995).

DOI: 10.1016/0926-3373(95)00026-7

Google Scholar

[22] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt. Res. Appl. , 15 (2007) 603-612.

DOI: 10.1002/pip.768

Google Scholar

[23] J. Jiu, S. Isoda, F. Wang, M. Adachi, Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B, 110 (2006) 2087-(2092).

DOI: 10.1021/jp055824n

Google Scholar

[24] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 516 (2008) 4613-4619.

DOI: 10.1016/j.tsf.2007.05.090

Google Scholar

[25] D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Grätzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano, 2 (2008) 1113-1116.

DOI: 10.1021/nn800174y

Google Scholar

[26] M. A. Green. High efficiency silicon solar cells. in Seventh EC Photovoltaic Solar Energy Conference. 1987. Springer.

Google Scholar

[27] M. A. Green, The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog. Photovolt. Res. Appl., 17 (2009) 183-189.

DOI: 10.1002/pip.892

Google Scholar

[28] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew. Sustainable Energy Rev., 11 (2007) 401-425.

DOI: 10.1016/j.rser.2005.01.009

Google Scholar

[29] S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297 (2002) 2243-2245.

DOI: 10.1126/science.1075035

Google Scholar

[30] J. Tang, J. R. Durrant, D. R. Klug, Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc., 130 (2008) 13885-13891.

DOI: 10.1021/ja8034637

Google Scholar

[31] A. Galińska, J. Walendziewski, Photocatalytic water splitting over Pt−TiO2 in the presence of sacrificial reagents. Energy Fuels, 19 (2005) 1143-1147.

DOI: 10.1021/ef0400619

Google Scholar

[32] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 5 (2009) 104-111.

DOI: 10.1002/smll.200800902

Google Scholar

[33] M. A. Khan, O. -B. Yang, Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl. Surf. Sci., 255 (2009) 3687-3690.

DOI: 10.1016/j.apsusc.2008.10.021

Google Scholar

[34] P. Salvador, The influence of niobium doping on the efficiency of n-TiO2 electrode in water photoelectrolysis. Sol. Energ. Mat., 2 (1980) 413-421.

DOI: 10.1016/0165-1633(80)90036-2

Google Scholar

[35] A. Mattsson, M. Leideborg, K. Larsson, G. Westin, L. Österlund, Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J. Phys. Chem. B, 110 (2006) 1210-1220.

DOI: 10.1021/jp055656z

Google Scholar

[36] P. Pongwan, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, N. Wetchakun, Highly efficient visible-light-induced photocatalytic activity of Fe-doped TiO2 nanoparticles. Eng. J., 16 (2012) 143-152.

DOI: 10.4186/ej.2012.16.3.143

Google Scholar

[37] J. A. Navı́o, J. J. Testa, P. Djedjeian, J. R. Padrón, D. Rodrı́guez, M. I. Litter, Iron-doped titania powders prepared by a Sol–gel method.: Part II: Photocatalytic properties. Appl. Catal. A, 178 (1999) 191-203.

DOI: 10.1016/s0926-860x(98)00286-5

Google Scholar

[38] T. Bak, W. Li, J. Nowotny, A. J. Atanacio, J. Davis, Photocatalytic properties of TiO2: Evidence of the key role of surface active sites in water oxidation. J. Phys. Chem. A, 119 (2015) 9465-9473.

DOI: 10.1021/acs.jpca.5b05031

Google Scholar

[39] J. Nowotny, T Bak, MK Nowotny, LR Sheppard, Surface active sites for water splitting, J. Chem. Phys. B, 110 (2006) 18492-18495.

DOI: 10.1021/jp063699p

Google Scholar

[40] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 43 (2014) 7520-7535.

DOI: 10.1039/c3cs60378d

Google Scholar

[41] MG Walter, EL Warren, JR McKone, SW Boettcher, Q. Mi, EA Santori, NS Lewis, Solar water splitting cells, Chem. Rev., 102 (2010) 6446-6473.

DOI: 10.1021/cr1002326

Google Scholar

[42] D. Reyes-Coronado, G. Rodríguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De Coss, G. Oskam, Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology, 19 (2008) 145605.

DOI: 10.1088/0957-4484/19/14/145605

Google Scholar

[43] D. Regonini, A. Jaroenworaluck, R. Stevens, C. R. Bowen, Effect of heat treatment on the properties and structure of TiO2 nanotubes: Phase composition and chemical composition. Surf. Interface Anal., 42 (2010) 139-144.

DOI: 10.1002/sia.3183

Google Scholar

[44] V. E. Henrich, Ultraviolet photoemission studies of molecular adsorption on oxide surfaces. Prog. Surf. Sci., 9 (1979) 143-164.

Google Scholar

[45] V. E. Henrich, G. Dresselhaus, H. Zeiger, Chemisorbed phases of O2 on TiO2 and SrTiO3. J. Vac. Sci. Technol., 15 (1978) 534-537.

Google Scholar

[46] J. Nowotny, M. A. Alim, T. Bak, M. A. Idris, M. Ionescu, K. Prince, M. Z. Sahdan, K. Sopian, M. A. Mat Teridi, W. Sigmund, Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem. Soc. Rev., 44 (2015).

DOI: 10.1039/c4cs00469h

Google Scholar

[47] T. Bak, J. Nowotny, M. K. Nowotny, Defect disorder of titanium dioxide, J. Phys. Chem. B, 110 (2006) 21560-67.

DOI: 10.1021/jp063700k

Google Scholar

[48] P. Kofstad, Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. 1972: Wiley-Interscience, New York.

Google Scholar

[49] A. M. Stoneham, Theory of defect processes. Phys. Today, 33 (2008) 34-42.

Google Scholar

[50] T. Norby, Proton conduction in solids, MRS Bull., 34 (2009) 923-928.

DOI: 10.1557/mrs2009.214

Google Scholar

[51] A. J. Atanacio, T. Bak, D. Chu, M. Ionescu, J. Nowotny, Segregation-induced low-dimensional surface structures in oxide semiconductors, in Handbook of Nanomaterials Properties, B. Bhushan, D. Luo, R.S. Schricker, W. Sigmund, S. Zauscher, Eds. 2014, Springer, Berlin, Heidelberg. pp.891-910.

DOI: 10.1007/978-3-642-31107-9_4

Google Scholar

[52] A. J. Atanacio, T. Bak, J. Nowotny, Niobium segregation in niobium-doped titanium dioxide (rutile), J. Phys. Chem. C, 118 (2014) 11174-85.

DOI: 10.1021/jp4110536

Google Scholar

[53] A. J. Atanacio and Y. Ikuma, Surface segregation of niobium and tantalum in titanium dioxide. Overview, J. Am. Ceram. Soc. (2016). DOI: 10. 1111/jace. 14122.

DOI: 10.1111/jace.14122

Google Scholar