[1]
M. K. Nowotny, J. Nowotny, Eds., Solid state chemistry and photocatalysis of titanium dioxide. TransTech publications, Zurich, (2010).
Google Scholar
[2]
D. E. Scaife, Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energ., 25 (1980) 41-54.
DOI: 10.1016/0038-092x(80)90405-3
Google Scholar
[3]
M. A. Butler, D. S. Ginley, Principles of photoelectrochemical, solar energy conversion. J. Mater. Sci., 15 (1980) 1-19.
Google Scholar
[4]
N. G. Park, J. van de Lagemaat, A. J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B, 104 (2000) 8989-8994.
DOI: 10.1021/jp994365l
Google Scholar
[5]
U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395 (1998) 583-585.
DOI: 10.1038/26936
Google Scholar
[6]
G. Smestad, C. Bignozzi, R. Argazzi, Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Sol. Energ. Mat. Sol. Cells, 32 (1994) 259-272.
DOI: 10.1016/0927-0248(94)90211-9
Google Scholar
[7]
O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33.
Google Scholar
[8]
T. Bak, J. Nowotny, N. J. Sucher, E. Wachsman, Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (rutile) with oxygen, water, and bacteria. J. Phys. Chem. C, 115 (2011) 15711-15738.
DOI: 10.1021/jp2027862
Google Scholar
[9]
M. Ni, M. K. Leung, D. Y. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustainable Energy Rev., 11 (2007) 401-425.
DOI: 10.1016/j.rser.2005.01.009
Google Scholar
[10]
W. J. Youngblood, S. -H. A. Lee, K. Maeda, T. E. Mallouk, Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res., 42 (2009) 1966-(1973).
DOI: 10.1021/ar9002398
Google Scholar
[11]
K. J. Young, L. A. Martini, R. L. Milot, R. C. Snoeberger Iii, V. S. Batista, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, Light-driven water oxidation for solar fuels. Coord. Chem. Rev., 256 (2012) 2503-2520.
DOI: 10.1016/j.ccr.2012.03.031
Google Scholar
[12]
A. J. Nozik, J. Miller, Introduction to solar photon conversion. Chem. Rev., 110 (2010) 6443-6445.
DOI: 10.1021/cr1003419
Google Scholar
[13]
D. K. Zhong, J. Sun, H. Inumaru, D. R. Gamelin, Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc., 131 (2009) 6086-6087.
DOI: 10.1021/ja9016478
Google Scholar
[14]
Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414 (2001) 625-627.
DOI: 10.1038/414625a
Google Scholar
[15]
G. P. Smestad, A. Steinfeld, Review: Photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind. Eng. Chem. Res., 51 (2012) 11828-11840.
DOI: 10.1021/ie3007962
Google Scholar
[16]
J. Nowotny, C. C. Sorrell, L. R. Sheppard, T. Bak, Solar-hydrogen: Environmentally safe fuel for the future. Int. J. Hydrogen Energy, 30 (2005) 521-544.
DOI: 10.1016/j.ijhydene.2004.06.012
Google Scholar
[17]
R. W. Matthews, Solar-electric water purification using photocatalytic oxidation with TiO2 as a stationary phase. Sol. Energ., 38 (1987) 405-413.
DOI: 10.1016/0038-092x(87)90021-1
Google Scholar
[18]
R. W. Matthews, Purification of water with near—U.V. Illuminated suspensions of titanium dioxide. Water Res., 24 (1990) 653-660.
DOI: 10.1016/0043-1354(90)90199-g
Google Scholar
[19]
R. W. Matthews, Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand. Water Res., 25 (1991) 1169-1176.
DOI: 10.1016/0043-1354(91)90054-t
Google Scholar
[20]
X. Z. Li, H. Liu, L. F. Cheng, H. J. Tong, Photocatalytic oxidation using a new catalyst TiO2 microspherefor water and wastewater treatment. Environ. Sci. Technol., 37 (2003) 3989-3994.
DOI: 10.1021/es0262941
Google Scholar
[21]
A. Fernández, G. Lassaletta, V. M. Jiménez, A. Justo, A. R. González-Elipe, J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl Catal B, 7 (1995).
DOI: 10.1016/0926-3373(95)00026-7
Google Scholar
[22]
S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt. Res. Appl. , 15 (2007) 603-612.
DOI: 10.1002/pip.768
Google Scholar
[23]
J. Jiu, S. Isoda, F. Wang, M. Adachi, Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B, 110 (2006) 2087-(2092).
DOI: 10.1021/jp055824n
Google Scholar
[24]
S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 516 (2008) 4613-4619.
DOI: 10.1016/j.tsf.2007.05.090
Google Scholar
[25]
D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Grätzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano, 2 (2008) 1113-1116.
DOI: 10.1021/nn800174y
Google Scholar
[26]
M. A. Green. High efficiency silicon solar cells. in Seventh EC Photovoltaic Solar Energy Conference. 1987. Springer.
Google Scholar
[27]
M. A. Green, The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog. Photovolt. Res. Appl., 17 (2009) 183-189.
DOI: 10.1002/pip.892
Google Scholar
[28]
M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew. Sustainable Energy Rev., 11 (2007) 401-425.
DOI: 10.1016/j.rser.2005.01.009
Google Scholar
[29]
S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297 (2002) 2243-2245.
DOI: 10.1126/science.1075035
Google Scholar
[30]
J. Tang, J. R. Durrant, D. R. Klug, Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc., 130 (2008) 13885-13891.
DOI: 10.1021/ja8034637
Google Scholar
[31]
A. Galińska, J. Walendziewski, Photocatalytic water splitting over Pt−TiO2 in the presence of sacrificial reagents. Energy Fuels, 19 (2005) 1143-1147.
DOI: 10.1021/ef0400619
Google Scholar
[32]
A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 5 (2009) 104-111.
DOI: 10.1002/smll.200800902
Google Scholar
[33]
M. A. Khan, O. -B. Yang, Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl. Surf. Sci., 255 (2009) 3687-3690.
DOI: 10.1016/j.apsusc.2008.10.021
Google Scholar
[34]
P. Salvador, The influence of niobium doping on the efficiency of n-TiO2 electrode in water photoelectrolysis. Sol. Energ. Mat., 2 (1980) 413-421.
DOI: 10.1016/0165-1633(80)90036-2
Google Scholar
[35]
A. Mattsson, M. Leideborg, K. Larsson, G. Westin, L. Österlund, Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J. Phys. Chem. B, 110 (2006) 1210-1220.
DOI: 10.1021/jp055656z
Google Scholar
[36]
P. Pongwan, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, N. Wetchakun, Highly efficient visible-light-induced photocatalytic activity of Fe-doped TiO2 nanoparticles. Eng. J., 16 (2012) 143-152.
DOI: 10.4186/ej.2012.16.3.143
Google Scholar
[37]
J. A. Navı́o, J. J. Testa, P. Djedjeian, J. R. Padrón, D. Rodrı́guez, M. I. Litter, Iron-doped titania powders prepared by a Sol–gel method.: Part II: Photocatalytic properties. Appl. Catal. A, 178 (1999) 191-203.
DOI: 10.1016/s0926-860x(98)00286-5
Google Scholar
[38]
T. Bak, W. Li, J. Nowotny, A. J. Atanacio, J. Davis, Photocatalytic properties of TiO2: Evidence of the key role of surface active sites in water oxidation. J. Phys. Chem. A, 119 (2015) 9465-9473.
DOI: 10.1021/acs.jpca.5b05031
Google Scholar
[39]
J. Nowotny, T Bak, MK Nowotny, LR Sheppard, Surface active sites for water splitting, J. Chem. Phys. B, 110 (2006) 18492-18495.
DOI: 10.1021/jp063699p
Google Scholar
[40]
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 43 (2014) 7520-7535.
DOI: 10.1039/c3cs60378d
Google Scholar
[41]
MG Walter, EL Warren, JR McKone, SW Boettcher, Q. Mi, EA Santori, NS Lewis, Solar water splitting cells, Chem. Rev., 102 (2010) 6446-6473.
DOI: 10.1021/cr1002326
Google Scholar
[42]
D. Reyes-Coronado, G. Rodríguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R. De Coss, G. Oskam, Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology, 19 (2008) 145605.
DOI: 10.1088/0957-4484/19/14/145605
Google Scholar
[43]
D. Regonini, A. Jaroenworaluck, R. Stevens, C. R. Bowen, Effect of heat treatment on the properties and structure of TiO2 nanotubes: Phase composition and chemical composition. Surf. Interface Anal., 42 (2010) 139-144.
DOI: 10.1002/sia.3183
Google Scholar
[44]
V. E. Henrich, Ultraviolet photoemission studies of molecular adsorption on oxide surfaces. Prog. Surf. Sci., 9 (1979) 143-164.
Google Scholar
[45]
V. E. Henrich, G. Dresselhaus, H. Zeiger, Chemisorbed phases of O2 on TiO2 and SrTiO3. J. Vac. Sci. Technol., 15 (1978) 534-537.
Google Scholar
[46]
J. Nowotny, M. A. Alim, T. Bak, M. A. Idris, M. Ionescu, K. Prince, M. Z. Sahdan, K. Sopian, M. A. Mat Teridi, W. Sigmund, Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem. Soc. Rev., 44 (2015).
DOI: 10.1039/c4cs00469h
Google Scholar
[47]
T. Bak, J. Nowotny, M. K. Nowotny, Defect disorder of titanium dioxide, J. Phys. Chem. B, 110 (2006) 21560-67.
DOI: 10.1021/jp063700k
Google Scholar
[48]
P. Kofstad, Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. 1972: Wiley-Interscience, New York.
Google Scholar
[49]
A. M. Stoneham, Theory of defect processes. Phys. Today, 33 (2008) 34-42.
Google Scholar
[50]
T. Norby, Proton conduction in solids, MRS Bull., 34 (2009) 923-928.
DOI: 10.1557/mrs2009.214
Google Scholar
[51]
A. J. Atanacio, T. Bak, D. Chu, M. Ionescu, J. Nowotny, Segregation-induced low-dimensional surface structures in oxide semiconductors, in Handbook of Nanomaterials Properties, B. Bhushan, D. Luo, R.S. Schricker, W. Sigmund, S. Zauscher, Eds. 2014, Springer, Berlin, Heidelberg. pp.891-910.
DOI: 10.1007/978-3-642-31107-9_4
Google Scholar
[52]
A. J. Atanacio, T. Bak, J. Nowotny, Niobium segregation in niobium-doped titanium dioxide (rutile), J. Phys. Chem. C, 118 (2014) 11174-85.
DOI: 10.1021/jp4110536
Google Scholar
[53]
A. J. Atanacio and Y. Ikuma, Surface segregation of niobium and tantalum in titanium dioxide. Overview, J. Am. Ceram. Soc. (2016). DOI: 10. 1111/jace. 14122.
DOI: 10.1111/jace.14122
Google Scholar