Oxygen Deficient TiO2 Photoanode for Photoelectrochemical Water Oxidation

Article Preview

Abstract:

Titanium dioxide (TiO2) has been widely used as photoanodes in photoelectrochemical (PEC) water splitting. However, the typically high density of bandgap trap states results in fast charge carrier recombination and poor electrical conductivity, and thereby weak PEC performance. Rational creation of oxygen vacancy (Vo) in TiO2 has been demonstrated as an effective method to modify the electronic and optical properties, as well as improved PEC performance. Different strategies have been developed to fabricate oxygen deficient TiO2 photoanodes, such as hydrogen treatment, thermal annealing, electrochemical reduction, flame reduction, and chemical reduction. In conjunction with oxygen vacancy creation, doping of TiO2 with elements further enhances the PEC activity by introducing other bandgap states. Various techniques, including ultrafast laser spectroscopy, have been employed to probe the chemical nature and associated charge carrier dynamics of the bandgap states.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 253)

Pages:

11-40

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol., 46 (2012) 2242-50.

DOI: 10.1021/es204168d

Google Scholar

[2] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev., 11 (2007) 401-425.

DOI: 10.1016/j.rser.2005.01.009

Google Scholar

[3] P.V. Kamat, TiO2 Nanostructures- Recent Physical Chemistry Advances. J. Phys. Chem. C, 116 (2012) 11849-11851.

DOI: 10.1021/jp305026h

Google Scholar

[4] S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A, 115 (2011) 13211-41.

DOI: 10.1021/jp204364a

Google Scholar

[5] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar Water Splitting Cells. Chem. Rev., 110 (2010) 6446-6473.

DOI: 10.1021/cr1002326

Google Scholar

[6] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 38 (2009) 253-78.

DOI: 10.1039/b800489g

Google Scholar

[7] Y. Lin, G. Yuan, R. Liu, S. Zhou, S.W. Sheehan, D. Wang, Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chem. Phys. Lett., 507 (2011) 209-215.

DOI: 10.1016/j.cplett.2011.03.074

Google Scholar

[8] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at Semiconductor Electrode. Nature, 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[9] M. Grätzel, Photoelectrochemical cells. Nature, 414 (2001) 338-344.

Google Scholar

[10] S. Palmas, A.M. Polcaro, J.R. Ruiz, A. Da Pozzo, M. Mascia, A. Vacca, TiO2 photoanodes for electrically enhanced water splitting. Int. J. Hydrogen Energy, 35 (2010) 6561-6570.

DOI: 10.1016/j.ijhydene.2010.04.039

Google Scholar

[11] S.Y. Noh, K. Sun, C. Choi, M. Niu, M. Yang, K. Xu, S. Jin, D. Wang, Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy, 2 (2013) 351-360.

DOI: 10.1016/j.nanoen.2012.10.010

Google Scholar

[12] C. Liu, N.P. Dasgupta, P. Yang, Semiconductor nanowires for artificial photosynthesis. Chem. Mater., 26 (2014) 415-422.

DOI: 10.1021/cm4023198

Google Scholar

[13] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy- materials-related aspects. Int. J. Hydrogen Energy, 27 (2002) 991-1022.

DOI: 10.1016/s0360-3199(02)00022-8

Google Scholar

[14] P. Salvador, Hole diffusion length in n-TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis. J. Appl. Phys., 55 (1984) 2977.

DOI: 10.1063/1.333358

Google Scholar

[15] S. Hoang, S.P. Berglund, N.T. Hahn, A.J. Bard, C.B. Mullins, Enhancing Visible Light Photo-oxidation of Water with TiO2 Nanowire Arrays via Cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. J. Am. Chem. Soc., 134 (2012).

DOI: 10.1021/ja211369s

Google Scholar

[16] W.H. Leng, Z. Zhang, J.Q. Zhang, C.N. Cao, Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B, 109 (2005).

DOI: 10.1021/jp051821z

Google Scholar

[17] L.C. Seitz, Z. Chen, A.J. Forman, B.A. Pinaud, J.D. Benck, T.F. Jaramillo, Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem, 7 (2014) 1372-85.

DOI: 10.1002/cssc.201301030

Google Scholar

[18] L.M. Peter, K.G. Upul Wijayantha, Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. Chemphyschem, 15 (2014) 1983-95.

DOI: 10.1002/cphc.201402024

Google Scholar

[19] T. Wang, Z. Luo, C. Li, J. Gong, Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem. Soc. Rev., 43 (2014) 7469-7484.

DOI: 10.1039/c3cs60370a

Google Scholar

[20] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 43 (2014) 7520-7535.

DOI: 10.1039/c3cs60378d

Google Scholar

[21] J. Chen, D. Yang, D. Song, J. Jiang, A. Ma, M.Z. Hu, C. Ni, Recent progress in enhancing solar-to-hydrogen efficiency. J. Power Sources, 280 (2015) 649-666.

DOI: 10.1016/j.jpowsour.2015.01.073

Google Scholar

[22] J. Tian, Z. Zhao, A. Kumar, R.I. Boughtonc, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev., 43 (2014) 6920-6937.

DOI: 10.1039/c4cs00180j

Google Scholar

[23] V.J. Babu, S. Vempati, T. Uyar, S. Ramakrishna, Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys., 2015 (2015) 2960-2986.

DOI: 10.1039/c4cp04245j

Google Scholar

[24] Y. Li, J.Z. Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser & Photonics Reviews, 4 (2010) 517-528.

DOI: 10.1002/lpor.200910025

Google Scholar

[25] Y.J. Lin, G.B. Yuan, R. Liu, S. Zhou, S.W. Sheehan, D.W. Wang, Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chem. Phys. Lett., 507 (2011) 209-215.

DOI: 10.1016/j.cplett.2011.03.074

Google Scholar

[26] H.G. Park, J.K. Holt, Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energy Environ Sci., 3 (2010) 1028-1036.

DOI: 10.1039/b922057g

Google Scholar

[27] K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X.J. Feng, M. Paulose, J.A. Seabold, K.S. Choi, C.A. Grimes, Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C, 113 (2009).

DOI: 10.1021/jp809385x

Google Scholar

[28] G.M. Wang, H.Y. Wang, Y.C. Ling, Y.C. Tang, X.Y. Yang, R.C. Fitzmorris, C.C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett., 11 (2011) 3026-3033.

DOI: 10.1021/nl201766h

Google Scholar

[29] A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev., 110 (2010) 527-546.

DOI: 10.1021/cr900075v

Google Scholar

[30] C. Liu, J. Tang, H.M. Chen, B. Liu, P. Yang, A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett., 13 (2013) 2989-92.

DOI: 10.1021/nl401615t

Google Scholar

[31] M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng, Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett., 12 (2012) 1503-8.

DOI: 10.1021/nl2042968

Google Scholar

[32] Y.J. Hwang, A. Boukai, P. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett., 9 (2009) 410-415.

DOI: 10.1021/nl8032763

Google Scholar

[33] J. Tang, B. Kong, Y. Wang, M. Xu, Y. Wang, H. Wu, G. Zheng, Photoelectrochemical detection of glutathione by IrO2-hemin-TiO2 nanowire arrays. Nano Lett., 13 (2013) 5350-4.

DOI: 10.1021/nl4028507

Google Scholar

[34] Y. Wang, Y. -Y. Zhang, J. Tang, H. Wu, M. Xu, Z. Peng, X. -G. Gong, G. Zheng, Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. ACS Nano, 10 (2013) 9375-9383.

DOI: 10.1021/nn4040876

Google Scholar

[35] Z. Zhang, M.F. Hossain, T. Takahashi, Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen Energy, 35 (2010) 8528-8535.

DOI: 10.1016/j.ijhydene.2010.03.032

Google Scholar

[36] Y. Sun, G. Wang, K. Yan, TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell. Int. J. Hydrogen Energy, 36 (2011) 15502-15508.

DOI: 10.1016/j.ijhydene.2011.08.112

Google Scholar

[37] P. Szymanski, M.A. El-Sayed, Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: A short review. Theor. Chem. Acc., 131 (2012).

DOI: 10.1007/s00214-012-1202-2

Google Scholar

[38] N.K. Allam, C. -W. Yen, R.D. Near, M.A. El-Sayed, Bacteriorhodopsin/TiO2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting. Energ. Environ. Sci., 4 (2011) 2909.

DOI: 10.1039/c1ee01447a

Google Scholar

[39] Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A, 1 (2013) 5766.

DOI: 10.1039/c3ta10689f

Google Scholar

[40] N. Lu, X. Quan, J. Li, S. Chen, H. Yu, G. Chen, Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. B, 111 (2007) 11836-11842.

DOI: 10.1021/jp071359d

Google Scholar

[41] S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja, Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J. Phys. Chem. C, 111 (2007).

DOI: 10.1021/jp071906v

Google Scholar

[42] N.K. Allam, M.A. El-Sayed, Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: Structural and optical properties. J. Phys. Chem. C, 114 (2010) 12024-12029.

DOI: 10.1021/jp1037014

Google Scholar

[43] B. Chen, J. Hou, K. Lu, Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir, 29 (2013) 5911-9.

DOI: 10.1021/la400586r

Google Scholar

[44] J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett., 6 (2006) 24-28.

DOI: 10.1021/nl051807y

Google Scholar

[45] W. -T. Sun, Y. Yu, H. -Y. Pan, X. -F. Gao, Q. Chen, L. -M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc., 130 (2007) 1124-1125.

DOI: 10.1021/ja0777741

Google Scholar

[46] J.S. Yang, W.P. Liao, J.J. Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces, 5 (2013) 7425-31.

DOI: 10.1021/am401746b

Google Scholar

[47] H. Wang, Y. Bai, Q. Wu, W. Zhou, H. Zhang, J. Li, L. Guo, Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Phys. Chem. Chem. Phys., 13 (2011) 7008-13.

DOI: 10.1039/c1cp20351g

Google Scholar

[48] D.V. Bavykin, L. Passoni, F.C. Walsh, Hierarchical tube-in-tube structures prepared by electrophoretic deposition of nanostructured titanates into a TiO2 nanotube array. Chem. Commun., 49 (2013) 7007-9.

DOI: 10.1039/c3cc43264e

Google Scholar

[49] I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett., 11 (2011) 4978-84.

DOI: 10.1021/nl2029392

Google Scholar

[50] X. Sheng, D. He, J. Yang, K. Zhu, X. Feng, Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett, 14 (2014) 1848-52.

DOI: 10.1021/nl4046262

Google Scholar

[51] Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano, 6 (2012) 5060-5069.

DOI: 10.1021/nn300679d

Google Scholar

[52] Y. -C. Pu, Y. Ling, K. -D. Chang, C. -M. Liu, J.Z. Zhang, Y. -J. Hsu, Y. Li, Surface passivation of TiO2 nanowires using a facile precursor-treatment approach for photoelectrochemical water oxidation. J. Phys. Chem. C, 118 (2014) 15086-15094.

DOI: 10.1021/jp5041019

Google Scholar

[53] S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today, 147 (2009) 1-59.

DOI: 10.1016/j.cattod.2009.06.018

Google Scholar

[54] R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 49 (2011) 741-772.

DOI: 10.1016/j.carbon.2010.10.010

Google Scholar

[55] C.D. Valentin, G. Pacchioni, A. Selloni, Theory of carbon doping of titanium dioxide. Chem. Mater., 17 (2005) 6656-6665.

DOI: 10.1021/cm051921h

Google Scholar

[56] J.C. Yu, W. Ho, J. Yu, H. Yip, P.K. Wong, J. Zhang, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol., 39 (2005) 1175-1179.

DOI: 10.1021/es035374h

Google Scholar

[57] S. Hoang, S.W. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett., 12 (2012) 26-32.

DOI: 10.1021/nl2028188

Google Scholar

[58] R. Nakamura, T. Tanaka, Y. Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B, 108 (2004) 10617-10620.

DOI: 10.1021/jp048112q

Google Scholar

[59] E.M. Neville, M.J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J.M.D. MacElroy, J.A. Sullivan, K.R. Thampi, Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol–gel processes in the presence of melamine borate: Reflections through photocatalysis. J. Phys. Chem. C, 116 (2012).

DOI: 10.1021/jp303645p

Google Scholar

[60] K. Yang, Y. Dai, B. Huang, Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles. J. Phys. Chem. C, 111 (2007) 18985-18994.

DOI: 10.1021/jp0756350

Google Scholar

[61] K. Yang, Y. Dai, B. Huang, M. -H. Whangbo, Density functional characterization of the visible-light absorption in substitutional C-anion- and C-cation-doped TiO2. J. Phys. Chem. C, 113 (2009) 2624–2629.

DOI: 10.1021/jp808483a

Google Scholar

[62] J. Zhong, F. Chen, J. Zhang, Carbon-deposited TiO2: Synthesis, characterization, and visible photocatalytic performance. J. Phys. Chem. C, 114 (2010) 933-939.

DOI: 10.1021/jp909835m

Google Scholar

[63] Y. Gai, J. Li, S. -S. Li, J. -B. Xia, S. -H. Wei, Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity. Phys. Rev. Lett., 102 (2009) 036402.

DOI: 10.1103/physrevlett.102.036402

Google Scholar

[64] W.J. Youngblood, S. -H.L. Anna, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust, T.E. Mallouk, Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cel. J. Am. Chem. Soc., 131 (2009).

DOI: 10.1021/ja809108y

Google Scholar

[65] J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett., 10 (2010) 478-83.

DOI: 10.1021/nl903217w

Google Scholar

[66] H. Wang, G. Wang, Y. Ling, M. Lepert, C. Wang, J.Z. Zhang, Y. Li, Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale, 4 (2012) 1463-6.

DOI: 10.1039/c2nr11278g

Google Scholar

[67] L. Liu, J. Hensel, R.C. Fitzmorris, Y. Li, J.Z. Zhang, Preparation and Photoelectrochemical Properties of CdSe/TiO2 Hybrid Mesoporous Structures. J. Phys. Chem. Lett., 1 (2010) 155-160.

DOI: 10.1021/jz900122u

Google Scholar

[68] C. Cheng, S.K. Karuturi, L. Liu, J. Liu, H. Li, L.T. Su, A.I. Tok, H.J. Fan, Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small, 8 (2012) 37-42.

DOI: 10.1002/smll.201101660

Google Scholar

[69] R.S. Selinsky, Q. Ding, M.S. Faber, J.C. Wright, S. Jin, Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev., 42 (2013) 2963-85.

DOI: 10.1039/c2cs35374a

Google Scholar

[70] B. Mukherjee, W. Wilson, V.R. Subramanian, TiO2 nanotube (T_NT) surface treatment revisited: Implications of ZnO, TiCl4, and H2O2 treatment on the photoelectrochemical properties of T_NT and T_NT-CdSe. Nanoscale, 5 (2013) 269-74.

DOI: 10.1039/c2nr31660a

Google Scholar

[71] T.K. Sung, J.H. Kang, D.M. Jang, Y. Myung, G.B. Jung, H.S. Kim, C.S. Jung, Y.J. Cho, J. Park, C. -L. Lee, CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes. J. Mater. Chem., 21 (2011) 4553.

DOI: 10.1039/c0jm03818k

Google Scholar

[72] K. Guo, Z. Liu, J. Han, Z. Liu, Y. Li, B. Wang, T. Cui, C. Zhou, Hierarchical TiO2-CuInS2 core-shell nanoarrays for photoelectrochemical water splitting. Phys. Chem. Chem. Phys., 16 (2014) 16204-13.

DOI: 10.1039/c4cp01971g

Google Scholar

[73] Z.J. Zhou, J.Q. Fan, X. Wang, W.Z. Sun, W.H. Zhou, Z.L. Du, S.X. Wu, Solution fabrication and photoelectrical properties of CuInS2 nanocrystals on TiO2 nanorod array. ACS Appl. Mater. Interfaces, 3 (2011) 2189-94.

DOI: 10.1021/am200500k

Google Scholar

[74] J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda, N. Shibata, T. Yamada, K. Domen, enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method. Angew. Chem. Int. Ed. Engl., 53 (2014).

DOI: 10.1002/anie.201406483

Google Scholar

[75] Y. Liao, H. Zhang, Z. Zhong, L. Jia, F. Bai, J. Li, P. Zhong, H. Chen, J. Zhang, Enhanced visible-photocatalytic activity of anodic TiO2 nanotubes film via decoration with CuInSe2 nanocrystals. ACS Appl. Mater. Interfaces, 5 (2013) 11022-8.

DOI: 10.1021/am403264q

Google Scholar

[76] J.H. Bang, P.V. Kamat, Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv. Funct. Mater., 20 (2010) 1970-(1976).

DOI: 10.1002/adfm.200902234

Google Scholar

[77] H. Wang, Y. Bai, H. Zhang, Z. Zhang, J. Li, L. Guo, CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes. J. Phys. Chem. C, 114 (2010) 16451-16455.

DOI: 10.1021/jp104208z

Google Scholar

[78] P.V. Kamat, Quantum dot solar cells. The next big thingin photovoltaics. J. Phys. Chem. Lett., 4 (2013) 908-918.

DOI: 10.1021/jz400052e

Google Scholar

[79] V. Chakrapani, K. Tvrdy, P.V. Kamat, Modulation of electron injection in CdSe-TiO2 system through medium alkalinity. J. Am. Chem. Soc., 132 (2010) 1228-1229.

DOI: 10.1021/ja909663r

Google Scholar

[80] I. Robel, M. Kuno, P.V. Kamat, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc., 129 (2007) 4136-4137.

DOI: 10.1021/ja070099a

Google Scholar

[81] R. Hardman, A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 114 (2006) 165-172.

DOI: 10.1289/ehp.8284

Google Scholar

[82] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107 (2003) 668-677.

DOI: 10.1021/jp026731y

Google Scholar

[83] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater., 10 (2011) 911-921.

DOI: 10.1038/nmat3151

Google Scholar

[84] H. Wang, T. You, W. Shi, J. Li, L. Guo, Au/TiO2/Au as a plasmonic coupling photocatalyst. J. Phys. Chem. C, 116 (2012) 6490-6494.

DOI: 10.1021/jp212303q

Google Scholar

[85] F. Wu, X. Hu, J. Fan, E. Liu, T. Sun, L. Kang, W. Hou, C. Zhu, H. Liu, Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics, 8 (2012).

DOI: 10.1007/s11468-012-9418-5

Google Scholar

[86] Z.W. Seh, S. Liu, M. Low, S.Y. Zhang, Z. Liu, A. Mlayah, M.Y. Han, Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater., 24 (2012) 2310-4.

DOI: 10.1002/adma.201104241

Google Scholar

[87] A. Primo, A. Corma, H. Garcia, Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13 (2011) 886-910.

DOI: 10.1039/c0cp00917b

Google Scholar

[88] Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett., 11 (2011) 1111-6.

DOI: 10.1021/nl104005n

Google Scholar

[89] Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett., 13 (2013).

DOI: 10.1021/nl3029202

Google Scholar

[90] W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater., 23 (2013) 1612-1619.

DOI: 10.1002/adfm.201202148

Google Scholar

[91] S.C. Warren, E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci., 5 (2012) 5133-5146.

DOI: 10.1039/c1ee02875h

Google Scholar

[92] J. Lee, S. Mubeen, X. Ji, G.D. Stucky, M. Moskovits, Plasmonic photoanodes for solar water splitting with visible light. Nano Lett., 12 (2012) 5014-9.

DOI: 10.1021/nl302796f

Google Scholar

[93] Z. Zheng, T. Tachikawa, T. Majima, Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc., 136 (2014) 6870-3.

DOI: 10.1021/ja502704n

Google Scholar

[94] K. Qian, B.C. Sweeny, A.C. Johnston-Peck, W. Niu, J.O. Graham, J.S. DuChene, J. Qiu, Y.C. Wang, M.H. Engelhard, D. Su, E.A. Stach, W.D. Wei, Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc., 136 (2014).

DOI: 10.1021/ja504097v

Google Scholar

[95] S. Mubeen, J. Lee, N. Singh, S. Kramer, G.D. Stucky, M. Moskovits, An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol., 8 (2013) 247-251.

DOI: 10.1038/nnano.2013.18

Google Scholar

[96] L.J. Brennan, F. Purcell-Milton, A.S. Salmeron, H. Zhang, A.O. Govorov, A.V. Fedorov, Y.K. Gun'ko, Hot plasmonic electrons for generation of enhanced photocurrent in gold-TiO2 nanocomposites. Nanoscale Res. Lett., 10 (2015).

DOI: 10.1186/s11671-014-0710-5

Google Scholar

[97] Y.C. Pu, G. Wang, K.D. Chang, Y. Ling, Y.K. Lin, B.C. Fitzmorris, C.M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.J. Hsu, Y. Li, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett., 13 (2013).

DOI: 10.1021/nl4018385

Google Scholar

[98] C. Clavero, Plasmon-induced hot-electron generation at nanoparticle-metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 8 (2014) 95-103.

DOI: 10.1038/nphoton.2013.238

Google Scholar

[99] X. Zhang, Y. Liu, S. -T. Lee, S. Yang, Z. Kang, Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energ. Environ. Sci., 7 (2014).

DOI: 10.1039/c3ee43278e

Google Scholar

[100] M.J. Kale, T. Avanesian, P. Christopher, Direct photocatalysis by plasmonic nanostructures. ACS Catal., 4 (2014) 116-128.

DOI: 10.1021/cs400993w

Google Scholar

[101] K. Ueno, H. Misawa, Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths. NPG Asia Mater., 5 (2013) e61.

DOI: 10.1038/am.2013.42

Google Scholar

[102] F. Su, T. Wang, R. Lv, J. Zhang, P. Zhang, J. Lu, J. Gong, Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale, 5 (2013) 9001-9.

DOI: 10.1039/c3nr02766j

Google Scholar

[103] M.Y. Xing, W.Z. Fang, M. Nasir, Y.F. Ma, J.L. Zhang, M. Anpo, Self-doped Ti3+ -enhanced TiO2 nanoparticles with a high-performance photocatalysis. J. Catal., 297 (2013) 236-243.

DOI: 10.1016/j.jcat.2012.10.014

Google Scholar

[104] J.Z. Zhang, Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Acc. Chem. Res., 30 (1997) 423-429.

DOI: 10.1021/ar960178j

Google Scholar

[105] A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc., 129 (2007) 14852-14853.

DOI: 10.1021/ja076134v

Google Scholar

[106] L. Du, A. Furube, K. Hara, R. Katoh, M. Tachiya, Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. J. Photoch. Photobio. C, 15 (2013) 21-30.

DOI: 10.1016/j.jphotochemrev.2012.11.001

Google Scholar

[107] Y.C. Pu, J.Z. Zhang, Mechanisms behind plasmonic enhancement of photocurrent in metal oxides. Austin J. Nanomed. Nanotechnol., 2 (2014) 1030.

Google Scholar

[108] R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res., (2013) 130226090752004.

Google Scholar

[109] G.M. Wang, Y.C. Ling, Y. Li, Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale, 4 (2012) 6682-6691.

DOI: 10.1039/c2nr32222f

Google Scholar

[110] A. Minguzzi, C.M. Sanchez-Sanchez, A. Gallo, V. Montiel, S. Rondinini, Evidence of facilitated electron transfer on hydrogenated self‐doped TiO2 nanocrystals. ChemElectroChem, 1 (2014) 1415-1421.

DOI: 10.1002/celc.201300226

Google Scholar

[111] X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 331 (2011) 746-750.

DOI: 10.1126/science.1200448

Google Scholar

[112] D.C. Cronemeyer, Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev., 113 (1959) 1222-1226.

Google Scholar

[113] Y. Yang, Y.C. Ling, G.M. Wang, Y. Li, The effect of the hydrogenation temperature on TiO2 nanostructures for photoelectrochemical water oxidation. Eur. J. Inorg. Chem., (2014) 760-766.

DOI: 10.1002/ejic.201300760

Google Scholar

[114] X.Y. Pan, M.Q. Yang, X.Z. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale, 5 (2013) 3601-3614.

DOI: 10.1039/c3nr00476g

Google Scholar

[115] F.M. Pesci, G.M. Wang, D.R. Klug, Y. Li, A.J. Cowan, Efficient suppression of electron hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C, 117 (2013) 25837-25844.

DOI: 10.1021/jp4099914

Google Scholar

[116] M. Samiee, J. Luo, Enhancing the visible-light photocatalytic activity of TiO2 by heat treatments in reducing environments. Mater. Lett., 98 (2013) 205-208.

DOI: 10.1016/j.matlet.2013.02.053

Google Scholar

[117] T. Xia, W. Zhang, J.B. Murowchick, G. Liu, X.B. Chen, A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv. Energy Mater., 3 (2013) 1516-1523.

DOI: 10.1002/aenm.201300294

Google Scholar

[118] T. Xia, Y.L. Zhang, J. Murowchick, X.B. Chen, Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catal. Today, 225 (2014) 2-9.

DOI: 10.1016/j.cattod.2013.08.026

Google Scholar

[119] Y.H. Lv, Y.Y. Zhu, Y.F. Zhu, Enhanced photocatalytic performance for the BiPO4-x nanorod induced by surface oxygen vacancy. J. Phys. Chem. C, 117 (2013) 18520-18528.

DOI: 10.1021/jp405596e

Google Scholar

[120] T. Nakajima, T. Nakamura, K. Shinoda, T. Tsuchiya, Rapid formation of black titania photoanodes: pulsed laser-induced oxygen release and enhanced solar water splitting efficiency. J. Mater. Chem. A, 2 (2014) 6762-6771.

DOI: 10.1039/c4ta00557k

Google Scholar

[121] K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y.J. Zhang, J.H. Ye, Self-doped SrTiO3-delta photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energ. Environ. Sci., 4 (2011) 4211-4219.

DOI: 10.1039/c1ee01594j

Google Scholar

[122] B. Choudhury, A. Choudhury, Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase-rutile mixed phase and of rutile phases of TiO2 nanoparticles. Physica E Low Dimens Syst Nanostruct., 56 (2014).

DOI: 10.1016/j.physe.2013.10.014

Google Scholar

[123] F.C. Lei, Y.F. Sun, K.T. Liu, S. Gao, L. Liang, B.C. Pan, Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc., 136 (2014) 6826-6829.

DOI: 10.1021/ja501866r

Google Scholar

[124] A.W. Pu, J.J. Deng, M. Li, J. Gao, H. Zhang, Y.Y. Hao, J. Zhong, X.H. Sun, Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. J. Mater. Chem. A, 2 (2014) 2491-2497.

DOI: 10.1039/c3ta14575a

Google Scholar

[125] M. Nagoshi, T. Suzuki, Y. Fukuda, K. Terashima, Y. Nakanishi, M. Ogita, A. Tokiwa, Y. Syono, M. Tachiki, Oxygen-loss effects on superconductivity of Bi2Sr2 CaCu2Oy system. Phys. Rev. B, 43 (1991) 10445-10450.

DOI: 10.1007/978-4-431-68141-0_90

Google Scholar

[126] H.Y. Wang, G.M. Wang, Y.C. Ling, M. Lepert, C.C. Wang, J.Z. Zhang, Y. Li, Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale, 4 (2012) 1463-1466.

DOI: 10.1039/c2nr11278g

Google Scholar

[127] Z.H. Zhang, M.N. Hedhili, H.B. Zhu, P. Wang, Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys. Chem. Chem. Phys, 15 (2013) 15637-15644.

DOI: 10.1039/c3cp52759j

Google Scholar

[128] B.H. Meekins, P.V. Kamat, Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. Acs Nano, 3 (2009) 3437-3446.

DOI: 10.1021/nn900897r

Google Scholar

[129] S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297 (2002) 2243-2245.

DOI: 10.1126/science.1075035

Google Scholar

[130] A.B. Murphy, Does carbon doping of TiO2 allow water splitting in visible light? Comments on Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting,. Energy Mater. Sol. Cells, 92 (2008) 363-367.

DOI: 10.1016/j.solmat.2007.10.007

Google Scholar

[131] F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, P.Y. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc., 132 (2010) 11856-11857.

DOI: 10.1021/ja103843d

Google Scholar

[132] F. Zuo, L. Wang, P.Y. Feng, Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity. Int. J. Hydrogen Energy, 39 (2014) 711-717.

DOI: 10.1016/j.ijhydene.2013.10.120

Google Scholar

[133] I.S. Cho, M. Logar, C.H. Lee, L.L. Cai, F.B. Prinz, X.L. Zheng, Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Nano Lett., 14 (2014) 24-31.

DOI: 10.1021/nl4026902

Google Scholar

[134] Q. Kang, J.Y. Cao, Y.J. Zhang, L.Q. Liu, H. Xu, J.H. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A, 1 (2013) 5766-5774.

DOI: 10.1039/c3ta10689f

Google Scholar

[135] W.Z. Fang, M.Y. Xing, J.L. Zhang, A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl. Catal. B-Environ., 160-161 (2014) 240-246.

DOI: 10.1016/j.apcatb.2014.05.031

Google Scholar

[136] C.Y. Mao, F. Zuo, Y. Hou, X.H. Bu, P.Y. Feng, In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew. Chem. Int. Ed., 53 (2014) 10485-10489.

DOI: 10.1002/anie.201406017

Google Scholar

[137] T.Q. Lin, C.Y. Yang, Z. Wang, H. Yin, X.J. Lu, F.Q. Huang, J.H. Lin, X.M. Xie, M.H. Jiang, Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energ. Environ. Sci., 7 (2014) 967-972.

DOI: 10.1039/c3ee42708k

Google Scholar

[138] C.Y. Yang, Z. Wang, T.Q. Lin, H. Yin, X.J. Lu, D.Y. Wan, T. Xu, C. Zheng, J.H. Lin, F.Q. Huang, X.M. Xie, M.H. Jiangl, Core-shell nanostructured Black, rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc., 135 (2013).

DOI: 10.1021/ja4076748

Google Scholar

[139] Z. Wang, C.Y. Yang, T.Q. Lin, H. Yin, P. Chen, D.Y. Wan, F.F. Xu, F.Q. Huang, J.H. Lin, X.M. Xie, M.H. Jiang, Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energ. Environ. Sci., 6 (2013).

DOI: 10.1039/c3ee41817k

Google Scholar

[140] G.L. Zhu, T.Q. Lin, X.J. Lu, W. Zhao, C.Y. Yang, Z. Wang, H. Yin, Z.Q. Liu, F.Q. Huang, J.H. Lin, Black brookite titania with high solar absorption and excellent photocatalytic performance. J. Mater. Chem. A, 1 (2013) 9650-9653.

DOI: 10.1039/c3ta11782k

Google Scholar

[141] H.L. Cui, W. Zhao, C.Y. Yang, H. Yin, T.Q. Lin, Y.F. Shan, Y. Xie, H. Gu, F.Q. Huang, Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J. Mater. Chem. A, 2 (2014) 8612-8616.

DOI: 10.1039/c4ta00176a

Google Scholar

[142] H. Yin, T.Q. Lin, C.Y. Yang, Z. Wang, G.L. Zhu, T. Xu, X.M. Xie, F.Q. Huang, M.H. Jiang, Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chem. Eur. J., 19 (2013).

DOI: 10.1002/chem.201302286

Google Scholar

[143] W.H. Sapuera, G. Mul, M.S. Hamdy, Ti3+-containing titania: Synthesis tactics and photocatalytic performance. Catal. Today, 246 (2015): 60-66.

DOI: 10.1016/j.cattod.2014.07.049

Google Scholar

[144] H. Tan, Z. Zhao, M. Niu, C. Mao, D. Cao, D. Cheng, P. Feng, Z. Sun, A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale, 6 (2014) 10216-23.

DOI: 10.1039/c4nr02677b

Google Scholar

[145] S. Tominaka, Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors. Inorg. Chem., 51 (2012) 10136-10140.

DOI: 10.1021/ic300557u

Google Scholar

[146] Z.X. Pei, L.Y. Ding, H. Lin, S.X. Weng, Z.Y. Zheng, Y.D. Hou, P. Liu, Facile synthesis of defect-mediated TiO2-x with enhanced visible light photocatalytic activity. J. Mater. Chem. A, 1 (2013) 10099-10102.

DOI: 10.1039/c3ta12062g

Google Scholar

[147] X. Liu, S.M. Gao, H. Xu, Z.Z. Lou, W.J. Wang, B.B. Huang, Y. Dai, Green synthetic approach for Ti3+ self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity. Nanoscale, 5 (2013) 1870-1875.

DOI: 10.1039/c2nr33563h

Google Scholar

[148] L.R. Grabstanowicz, S.M. Gao, T. Li, R.M. Rickard, T. Rajh, D.J. Liu, T. Xu, Facile oxidative conversion of TiH2 to high-concentration Ti3+- self-doped rutile TiO2 with visible-light photoactivity. Inorg. Chem., 52 (2013) 3884-3890.

DOI: 10.1021/ic3026182

Google Scholar

[149] Q. Zhu, Y. Peng, L. Lin, C.M. Fan, G.Q. Gao, R.X. Wang, A.W. Xu, Stable blue TiO2-x nanoparticles for efficient visible light photocatalysts. J. Mater. Chem. A, 2 (2014) 4429-4437.

DOI: 10.1039/c3ta14484d

Google Scholar

[150] F. Zuo, K. Bozhilov, R.J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P.Y. Feng, Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem. Int. Ed., 51 (2012).

DOI: 10.1002/anie.201202191

Google Scholar

[151] J.Y. Dong, J. Han, Y.S. Liu, A. Nakajima, S. Matsushita, S.H. Wei, W. Gao, Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Appl. Mater. Inter., 6 (2014) 1385-1388.

DOI: 10.1021/am405549p

Google Scholar

[152] J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett., 6 (2006) 24-28.

DOI: 10.1021/nl051807y

Google Scholar

[153] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[154] C.R. Phipps, Ultrashort pulses for impulse generation in laser propulsion applications. Laser Interaction and Related Plasma Phenomena - 13th International Conference, (1997) 477-484.

DOI: 10.1063/1.53564

Google Scholar

[155] J.Z. Zhang, Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. Journal of Physical Chemistry B, 104 (2000) 7239-7253.

DOI: 10.1021/jp000594s

Google Scholar

[156] J.Z. Zhang, Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Acc. Chem. Res., 30 (1997) 423-429.

DOI: 10.1021/ar960178j

Google Scholar

[157] N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H.M. Deng, J.Z. Zhang, Ultrafast studies of photoexcited electron dynamics in gamma- and alpha-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B, 102 (1998) 770-776.

DOI: 10.1021/jp973149e

Google Scholar

[158] Y.C. Ling, G.M. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett., 11 (2011) 2119-2125.

DOI: 10.1021/nl200708y

Google Scholar

[159] J.Z. Zhang, Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B, 104 (2000) 7239-7253.

DOI: 10.1021/jp000594s

Google Scholar

[160] J.Z. Zhang, Optical properties and spectroscopy of nanomaterials. 2009: World Scientific.

Google Scholar

[161] F. Wu, J.H. Yu, J. Joo, T. Hyeon, J.Z. Zhang, Ultrafast electronic dynamics of monodisperse PbS and CdS nanoparticles/nanorods: Effects of size on nonlinear relaxation. Opt. Mater., 29 (2007) 858-866.

DOI: 10.1016/j.optmat.2006.01.015

Google Scholar

[162] T.J. Norman, D. Magana, T. Wilson, C. Burns, J.Z. Zhang, D. Cao, F. Bridges, optical and surface structural properties of Mn2+-doped ZnSe nanoparticles. J. Phys. Chem. B, 107 (2003) 6309-6317.

DOI: 10.1021/jp027804g

Google Scholar

[163] B.C. Fitzmorris, Y.C. Pu, J.K. Cooper, Y.F. Lin, Y.J. Hsu, Y. Li, J.Z. Zhang, Optical properties and exciton dynamics of alloyed core/shell/shell Cd1-xZnxSe/ZnSe/ZnS quantum dots. ACS Appl. Mater. Interfaces, 5 (2013) 2893-900.

DOI: 10.1021/am303149r

Google Scholar

[164] B.C. Fitzmorris, G.K. Larsen, D.A. Wheeler, Y. Zhao, J.Z. Zhang, Ultrafast charge transfer dynamics in polycrystalline CdSe/TiO2 nanorods prepared by oblique angle codeposition. J. Phys. Chem. C, 116 (2012) 5033-5041.

DOI: 10.1021/jp2121752

Google Scholar

[165] D.A. Wheeler, J. -A. Huang, R.J. Newhouse, W. -F. Zhang, S. -T. Lee, J.Z. Zhang, Ultrafast exciton dynamics in silicon nanowires. J. Phys. Chem. Lett., 3 (2012) 766-771.

DOI: 10.1021/jz201597j

Google Scholar

[166] J.K. Cooper, J. Cao, J.Z. Zhang, Exciton dynamics of CdS thin films produced by chemical bath deposition and DC pulse sputtering. ACS Appl. Mater. Interfaces, 5 (2013) 7544-51.

DOI: 10.1021/am4018362

Google Scholar

[167] J.K. Cooper, Y. Ling, C. Longo, Y. Li, J.Z. Zhang, Effects of hydrogen treatment and air annealing on ultrafast charge carrier dynamics in ZnO nanowires under in situ photoelectrochemical conditions. J. Phys. Chem. C, 116 (2012) 17360-17368.

DOI: 10.1021/jp304428t

Google Scholar

[168] D.A. Wheeler, J.Z. Zhang, Exciton dynamics in semiconductor nanocrystals. Adv. Mater., 25 (2013) 2878-96.

Google Scholar

[169] Y. Ling, J.K. Cooper, Y. Yang, G. Wang, L. Munoz, H. Wang, J.Z. Zhang, Y. Li, Chemically modified titanium oxide nanostructures for dye-sensitized solar cells. Nano Energy, 2 (2013) 1373-1382.

DOI: 10.1016/j.nanoen.2013.07.001

Google Scholar

[170] S. Shen, P. Guo, D.A. Wheeler, J. Jiang, S.A. Lindley, C.X. Kronawitter, J.Z. Zhang, L. Guo, S.S. Mao, Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Nanoscale, 5 (2013) 9867-74.

DOI: 10.1039/c3nr03245k

Google Scholar

[171] B.C. Fitzmorris, J.M. Patete, J. Smith, X. Mascorro, S. Adams, S.S. Wong, J.Z. Zhang, Ultrafast transient absorption studies of hematite nanoparticles: The effect of particle shape on exciton dynamics. ChemSusChem, 6 (2013) 1907-(1914).

DOI: 10.1002/cssc.201300571

Google Scholar

[172] D.A. Wheeler, Y.C. Ling, R.J. Dillon, R.C. Fitzmorris, C.G. Dudzik, L. Zavodivker, T. Rajh, N.M. Dimitrijevic, G. Millhauser, C. Bardeen, Y. Li, J.Z. Zhang, Probing the nature of bandgap states in hydrogen-treated TiO2 nanowires. J. Phys. Chem. C, 117 (2013).

DOI: 10.1021/jp409857j

Google Scholar

[173] D.A. Wheeler, G.M. Wang, Y.C. Ling, Y. Li, J.Z. Zhang, Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energ. Environ. Sci., 5 (2012) 6682-6702.

DOI: 10.1039/c2ee00001f

Google Scholar

[174] J.K. Cooper, Y.C. Ling, C. Longo, Y. Li, J.Z. Zhang, Effects of hydrogen treatment and air annealing on ultrafast charge carrier dynamics in ZnO nanowires under in situ photoelectrochemical conditions. J. Phys. Chem. C, 116 (2012) 17360-17368.

DOI: 10.1021/jp304428t

Google Scholar

[175] D.P. Millar, Time-resolved fluorescence spectroscopy. Curr. Opin. Struct. Biol., 6 (1996) 637-642.

Google Scholar

[176] G. Schlegel, J. Bohnenberger, I. Potapova, A. Mews, Fluorescence decay time of single semiconductor nanocrystals. Phys. Rev. Lett., 88 (2002).

DOI: 10.1103/physrevlett.88.137401

Google Scholar

[177] S. Gul, J.K. Cooper, C. Corrado, B. Vollbrecht, F. Bridges, J. Guo, J.Z. Zhang, Synthesis, optical and structural properties, and charge carrier dynamics of Cu-doped ZnSe nanocrystals. J. Phys. Chem. C, 115 (2011) 20864-20875.

DOI: 10.1021/jp2047272

Google Scholar

[178] B.C. Fitzmorris, J.K. Cooper, J. Edberg, S. Gul, J. Guo, J.Z. Zhang, Synthesis and structural, optical, and dynamic properties of core/shell/shell CdSe/ZnSe/ZnS quantum dots. J. Phys. Chem. C, 116 (2012) 25065-25073.

DOI: 10.1021/jp3092013

Google Scholar

[179] S. Gul, J.K. Cooper, P. -A. Glans, J. Guo, V.K. Yachandra, J. Yano, J.Z. Zhang, Effect of Al3+ co-doping on the dopant local structure, optical properties, and exciton dynamics in Cu+‑doped ZnSe nanocrystals. ACS Nano, 7 (2013) 8680-8692.

DOI: 10.1021/nn402932q

Google Scholar

[180] D.C. Cronemeyer, M.A. Gilleo, The optical absorption and photoconductivity of rutile. Phys. Rev., 82 (1951) 975-976.

DOI: 10.1103/physrev.82.975

Google Scholar

[181] A.J. Cowan, J.W. Tang, W.H. Leng, J.R. Durrant, D.R. Klug, Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C, 114 (2010) 4208-4214.

DOI: 10.1021/jp909993w

Google Scholar

[182] S.R. Pendlebury, M. Barroso, A.J. Cowan, K. Sivula, J.W. Tang, M. Gratzel, D. Klug, J.R. Durrant, Dynamics of photogenerated holes in nanocrystalline alpha-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem. Commun., 47 (2011).

DOI: 10.1039/c0cc03627g

Google Scholar

[183] F. Le Formal, S.R. Pendlebury, M. Cornuz, S.D. Tilley, M. Gratzel, J.R. Durrant, Back electron-hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc., 136 (2014) 2564-2574.

DOI: 10.1021/ja412058x

Google Scholar