p.1
p.11
p.41
p.59
Oxygen Deficient TiO2 Photoanode for Photoelectrochemical Water Oxidation
Abstract:
Titanium dioxide (TiO2) has been widely used as photoanodes in photoelectrochemical (PEC) water splitting. However, the typically high density of bandgap trap states results in fast charge carrier recombination and poor electrical conductivity, and thereby weak PEC performance. Rational creation of oxygen vacancy (Vo) in TiO2 has been demonstrated as an effective method to modify the electronic and optical properties, as well as improved PEC performance. Different strategies have been developed to fabricate oxygen deficient TiO2 photoanodes, such as hydrogen treatment, thermal annealing, electrochemical reduction, flame reduction, and chemical reduction. In conjunction with oxygen vacancy creation, doping of TiO2 with elements further enhances the PEC activity by introducing other bandgap states. Various techniques, including ultrafast laser spectroscopy, have been employed to probe the chemical nature and associated charge carrier dynamics of the bandgap states.
Info:
Periodical:
Pages:
11-40
Citation:
Online since:
August 2016
Authors:
Keywords:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol., 46 (2012) 2242-50.
DOI: 10.1021/es204168d
[2] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev., 11 (2007) 401-425.
[3] P.V. Kamat, TiO2 Nanostructures- Recent Physical Chemistry Advances. J. Phys. Chem. C, 116 (2012) 11849-11851.
DOI: 10.1021/jp305026h
[4] S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A, 115 (2011) 13211-41.
DOI: 10.1021/jp204364a
[5] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar Water Splitting Cells. Chem. Rev., 110 (2010) 6446-6473.
DOI: 10.1021/cr1002326
[6] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 38 (2009) 253-78.
DOI: 10.1039/b800489g
[7] Y. Lin, G. Yuan, R. Liu, S. Zhou, S.W. Sheehan, D. Wang, Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chem. Phys. Lett., 507 (2011) 209-215.
[8] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at Semiconductor Electrode. Nature, 238 (1972) 37-38.
DOI: 10.1038/238037a0
[9] M. Grätzel, Photoelectrochemical cells. Nature, 414 (2001) 338-344.
[10] S. Palmas, A.M. Polcaro, J.R. Ruiz, A. Da Pozzo, M. Mascia, A. Vacca, TiO2 photoanodes for electrically enhanced water splitting. Int. J. Hydrogen Energy, 35 (2010) 6561-6570.
[11] S.Y. Noh, K. Sun, C. Choi, M. Niu, M. Yang, K. Xu, S. Jin, D. Wang, Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy, 2 (2013) 351-360.
[12] C. Liu, N.P. Dasgupta, P. Yang, Semiconductor nanowires for artificial photosynthesis. Chem. Mater., 26 (2014) 415-422.
DOI: 10.1021/cm4023198
[13] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy- materials-related aspects. Int. J. Hydrogen Energy, 27 (2002) 991-1022.
[14] P. Salvador, Hole diffusion length in n-TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis. J. Appl. Phys., 55 (1984) 2977.
DOI: 10.1063/1.333358
[15] S. Hoang, S.P. Berglund, N.T. Hahn, A.J. Bard, C.B. Mullins, Enhancing Visible Light Photo-oxidation of Water with TiO2 Nanowire Arrays via Cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. J. Am. Chem. Soc., 134 (2012).
DOI: 10.1021/ja211369s
[16] W.H. Leng, Z. Zhang, J.Q. Zhang, C.N. Cao, Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B, 109 (2005).
DOI: 10.1021/jp051821z
[17] L.C. Seitz, Z. Chen, A.J. Forman, B.A. Pinaud, J.D. Benck, T.F. Jaramillo, Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem, 7 (2014) 1372-85.
[18] L.M. Peter, K.G. Upul Wijayantha, Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. Chemphyschem, 15 (2014) 1983-95.
[19] T. Wang, Z. Luo, C. Li, J. Gong, Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem. Soc. Rev., 43 (2014) 7469-7484.
DOI: 10.1039/c3cs60370a
[20] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 43 (2014) 7520-7535.
DOI: 10.1039/c3cs60378d
[21] J. Chen, D. Yang, D. Song, J. Jiang, A. Ma, M.Z. Hu, C. Ni, Recent progress in enhancing solar-to-hydrogen efficiency. J. Power Sources, 280 (2015) 649-666.
[22] J. Tian, Z. Zhao, A. Kumar, R.I. Boughtonc, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev., 43 (2014) 6920-6937.
DOI: 10.1039/c4cs00180j
[23] V.J. Babu, S. Vempati, T. Uyar, S. Ramakrishna, Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys., 2015 (2015) 2960-2986.
DOI: 10.1039/c4cp04245j
[24] Y. Li, J.Z. Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser & Photonics Reviews, 4 (2010) 517-528.
[25] Y.J. Lin, G.B. Yuan, R. Liu, S. Zhou, S.W. Sheehan, D.W. Wang, Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chem. Phys. Lett., 507 (2011) 209-215.
[26] H.G. Park, J.K. Holt, Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energy Environ Sci., 3 (2010) 1028-1036.
DOI: 10.1039/b922057g
[27] K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X.J. Feng, M. Paulose, J.A. Seabold, K.S. Choi, C.A. Grimes, Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C, 113 (2009).
DOI: 10.1021/jp809385x
[28] G.M. Wang, H.Y. Wang, Y.C. Ling, Y.C. Tang, X.Y. Yang, R.C. Fitzmorris, C.C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett., 11 (2011) 3026-3033.
DOI: 10.1021/nl201766h
[29] A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev., 110 (2010) 527-546.
DOI: 10.1021/cr900075v
[30] C. Liu, J. Tang, H.M. Chen, B. Liu, P. Yang, A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett., 13 (2013) 2989-92.
DOI: 10.1021/nl401615t
[31] M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng, Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett., 12 (2012) 1503-8.
DOI: 10.1021/nl2042968
[32] Y.J. Hwang, A. Boukai, P. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett., 9 (2009) 410-415.
DOI: 10.1021/nl8032763
[33] J. Tang, B. Kong, Y. Wang, M. Xu, Y. Wang, H. Wu, G. Zheng, Photoelectrochemical detection of glutathione by IrO2-hemin-TiO2 nanowire arrays. Nano Lett., 13 (2013) 5350-4.
DOI: 10.1021/nl4028507
[34] Y. Wang, Y. -Y. Zhang, J. Tang, H. Wu, M. Xu, Z. Peng, X. -G. Gong, G. Zheng, Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. ACS Nano, 10 (2013) 9375-9383.
DOI: 10.1021/nn4040876
[35] Z. Zhang, M.F. Hossain, T. Takahashi, Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen Energy, 35 (2010) 8528-8535.
[36] Y. Sun, G. Wang, K. Yan, TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell. Int. J. Hydrogen Energy, 36 (2011) 15502-15508.
[37] P. Szymanski, M.A. El-Sayed, Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: A short review. Theor. Chem. Acc., 131 (2012).
[38] N.K. Allam, C. -W. Yen, R.D. Near, M.A. El-Sayed, Bacteriorhodopsin/TiO2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting. Energ. Environ. Sci., 4 (2011) 2909.
DOI: 10.1039/c1ee01447a
[39] Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A, 1 (2013) 5766.
DOI: 10.1039/c3ta10689f
[40] N. Lu, X. Quan, J. Li, S. Chen, H. Yu, G. Chen, Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. B, 111 (2007) 11836-11842.
DOI: 10.1021/jp071359d
[41] S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja, Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J. Phys. Chem. C, 111 (2007).
DOI: 10.1021/jp071906v
[42] N.K. Allam, M.A. El-Sayed, Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: Structural and optical properties. J. Phys. Chem. C, 114 (2010) 12024-12029.
DOI: 10.1021/jp1037014
[43] B. Chen, J. Hou, K. Lu, Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir, 29 (2013) 5911-9.
DOI: 10.1021/la400586r
[44] J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett., 6 (2006) 24-28.
DOI: 10.1021/nl051807y
[45] W. -T. Sun, Y. Yu, H. -Y. Pan, X. -F. Gao, Q. Chen, L. -M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc., 130 (2007) 1124-1125.
DOI: 10.1021/ja0777741
[46] J.S. Yang, W.P. Liao, J.J. Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces, 5 (2013) 7425-31.
DOI: 10.1021/am401746b
[47] H. Wang, Y. Bai, Q. Wu, W. Zhou, H. Zhang, J. Li, L. Guo, Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Phys. Chem. Chem. Phys., 13 (2011) 7008-13.
DOI: 10.1039/c1cp20351g
[48] D.V. Bavykin, L. Passoni, F.C. Walsh, Hierarchical tube-in-tube structures prepared by electrophoretic deposition of nanostructured titanates into a TiO2 nanotube array. Chem. Commun., 49 (2013) 7007-9.
DOI: 10.1039/c3cc43264e
[49] I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett., 11 (2011) 4978-84.
DOI: 10.1021/nl2029392
[50] X. Sheng, D. He, J. Yang, K. Zhu, X. Feng, Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett, 14 (2014) 1848-52.
DOI: 10.1021/nl4046262
[51] Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano, 6 (2012) 5060-5069.
DOI: 10.1021/nn300679d
[52] Y. -C. Pu, Y. Ling, K. -D. Chang, C. -M. Liu, J.Z. Zhang, Y. -J. Hsu, Y. Li, Surface passivation of TiO2 nanowires using a facile precursor-treatment approach for photoelectrochemical water oxidation. J. Phys. Chem. C, 118 (2014) 15086-15094.
DOI: 10.1021/jp5041019
[53] S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today, 147 (2009) 1-59.
[54] R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 49 (2011) 741-772.
[55] C.D. Valentin, G. Pacchioni, A. Selloni, Theory of carbon doping of titanium dioxide. Chem. Mater., 17 (2005) 6656-6665.
DOI: 10.1021/cm051921h
[56] J.C. Yu, W. Ho, J. Yu, H. Yip, P.K. Wong, J. Zhang, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol., 39 (2005) 1175-1179.
DOI: 10.1021/es035374h
[57] S. Hoang, S.W. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett., 12 (2012) 26-32.
DOI: 10.1021/nl2028188
[58] R. Nakamura, T. Tanaka, Y. Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B, 108 (2004) 10617-10620.
DOI: 10.1021/jp048112q
[59] E.M. Neville, M.J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J.M.D. MacElroy, J.A. Sullivan, K.R. Thampi, Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol–gel processes in the presence of melamine borate: Reflections through photocatalysis. J. Phys. Chem. C, 116 (2012).
DOI: 10.1021/jp303645p
[60] K. Yang, Y. Dai, B. Huang, Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles. J. Phys. Chem. C, 111 (2007) 18985-18994.
DOI: 10.1021/jp0756350
[61] K. Yang, Y. Dai, B. Huang, M. -H. Whangbo, Density functional characterization of the visible-light absorption in substitutional C-anion- and C-cation-doped TiO2. J. Phys. Chem. C, 113 (2009) 2624–2629.
DOI: 10.1021/jp808483a
[62] J. Zhong, F. Chen, J. Zhang, Carbon-deposited TiO2: Synthesis, characterization, and visible photocatalytic performance. J. Phys. Chem. C, 114 (2010) 933-939.
DOI: 10.1021/jp909835m
[63] Y. Gai, J. Li, S. -S. Li, J. -B. Xia, S. -H. Wei, Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity. Phys. Rev. Lett., 102 (2009) 036402.
[64] W.J. Youngblood, S. -H.L. Anna, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust, T.E. Mallouk, Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cel. J. Am. Chem. Soc., 131 (2009).
DOI: 10.1021/ja809108y
[65] J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett., 10 (2010) 478-83.
DOI: 10.1021/nl903217w
[66] H. Wang, G. Wang, Y. Ling, M. Lepert, C. Wang, J.Z. Zhang, Y. Li, Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale, 4 (2012) 1463-6.
DOI: 10.1039/c2nr11278g
[67] L. Liu, J. Hensel, R.C. Fitzmorris, Y. Li, J.Z. Zhang, Preparation and Photoelectrochemical Properties of CdSe/TiO2 Hybrid Mesoporous Structures. J. Phys. Chem. Lett., 1 (2010) 155-160.
DOI: 10.1021/jz900122u
[68] C. Cheng, S.K. Karuturi, L. Liu, J. Liu, H. Li, L.T. Su, A.I. Tok, H.J. Fan, Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small, 8 (2012) 37-42.
[69] R.S. Selinsky, Q. Ding, M.S. Faber, J.C. Wright, S. Jin, Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev., 42 (2013) 2963-85.
DOI: 10.1039/c2cs35374a
[70] B. Mukherjee, W. Wilson, V.R. Subramanian, TiO2 nanotube (T_NT) surface treatment revisited: Implications of ZnO, TiCl4, and H2O2 treatment on the photoelectrochemical properties of T_NT and T_NT-CdSe. Nanoscale, 5 (2013) 269-74.
DOI: 10.1039/c2nr31660a
[71] T.K. Sung, J.H. Kang, D.M. Jang, Y. Myung, G.B. Jung, H.S. Kim, C.S. Jung, Y.J. Cho, J. Park, C. -L. Lee, CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes. J. Mater. Chem., 21 (2011) 4553.
DOI: 10.1039/c0jm03818k
[72] K. Guo, Z. Liu, J. Han, Z. Liu, Y. Li, B. Wang, T. Cui, C. Zhou, Hierarchical TiO2-CuInS2 core-shell nanoarrays for photoelectrochemical water splitting. Phys. Chem. Chem. Phys., 16 (2014) 16204-13.
DOI: 10.1039/c4cp01971g
[73] Z.J. Zhou, J.Q. Fan, X. Wang, W.Z. Sun, W.H. Zhou, Z.L. Du, S.X. Wu, Solution fabrication and photoelectrical properties of CuInS2 nanocrystals on TiO2 nanorod array. ACS Appl. Mater. Interfaces, 3 (2011) 2189-94.
DOI: 10.1021/am200500k
[74] J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda, N. Shibata, T. Yamada, K. Domen, enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method. Angew. Chem. Int. Ed. Engl., 53 (2014).
[75] Y. Liao, H. Zhang, Z. Zhong, L. Jia, F. Bai, J. Li, P. Zhong, H. Chen, J. Zhang, Enhanced visible-photocatalytic activity of anodic TiO2 nanotubes film via decoration with CuInSe2 nanocrystals. ACS Appl. Mater. Interfaces, 5 (2013) 11022-8.
DOI: 10.1021/am403264q
[76] J.H. Bang, P.V. Kamat, Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv. Funct. Mater., 20 (2010) 1970-(1976).
[77] H. Wang, Y. Bai, H. Zhang, Z. Zhang, J. Li, L. Guo, CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes. J. Phys. Chem. C, 114 (2010) 16451-16455.
DOI: 10.1021/jp104208z
[78] P.V. Kamat, Quantum dot solar cells. The next big thingin photovoltaics. J. Phys. Chem. Lett., 4 (2013) 908-918.
DOI: 10.1021/jz400052e
[79] V. Chakrapani, K. Tvrdy, P.V. Kamat, Modulation of electron injection in CdSe-TiO2 system through medium alkalinity. J. Am. Chem. Soc., 132 (2010) 1228-1229.
DOI: 10.1021/ja909663r
[80] I. Robel, M. Kuno, P.V. Kamat, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc., 129 (2007) 4136-4137.
DOI: 10.1021/ja070099a
[81] R. Hardman, A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 114 (2006) 165-172.
DOI: 10.1289/ehp.8284
[82] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107 (2003) 668-677.
DOI: 10.1021/jp026731y
[83] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater., 10 (2011) 911-921.
DOI: 10.1038/nmat3151
[84] H. Wang, T. You, W. Shi, J. Li, L. Guo, Au/TiO2/Au as a plasmonic coupling photocatalyst. J. Phys. Chem. C, 116 (2012) 6490-6494.
DOI: 10.1021/jp212303q
[85] F. Wu, X. Hu, J. Fan, E. Liu, T. Sun, L. Kang, W. Hou, C. Zhu, H. Liu, Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics, 8 (2012).
[86] Z.W. Seh, S. Liu, M. Low, S.Y. Zhang, Z. Liu, A. Mlayah, M.Y. Han, Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater., 24 (2012) 2310-4.
[87] A. Primo, A. Corma, H. Garcia, Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13 (2011) 886-910.
DOI: 10.1039/c0cp00917b
[88] Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett., 11 (2011) 1111-6.
DOI: 10.1021/nl104005n
[89] Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett., 13 (2013).
DOI: 10.1021/nl3029202
[90] W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater., 23 (2013) 1612-1619.
[91] S.C. Warren, E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci., 5 (2012) 5133-5146.
DOI: 10.1039/c1ee02875h
[92] J. Lee, S. Mubeen, X. Ji, G.D. Stucky, M. Moskovits, Plasmonic photoanodes for solar water splitting with visible light. Nano Lett., 12 (2012) 5014-9.
DOI: 10.1021/nl302796f
[93] Z. Zheng, T. Tachikawa, T. Majima, Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc., 136 (2014) 6870-3.
DOI: 10.1021/ja502704n
[94] K. Qian, B.C. Sweeny, A.C. Johnston-Peck, W. Niu, J.O. Graham, J.S. DuChene, J. Qiu, Y.C. Wang, M.H. Engelhard, D. Su, E.A. Stach, W.D. Wei, Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc., 136 (2014).
DOI: 10.1021/ja504097v
[95] S. Mubeen, J. Lee, N. Singh, S. Kramer, G.D. Stucky, M. Moskovits, An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol., 8 (2013) 247-251.
[96] L.J. Brennan, F. Purcell-Milton, A.S. Salmeron, H. Zhang, A.O. Govorov, A.V. Fedorov, Y.K. Gun'ko, Hot plasmonic electrons for generation of enhanced photocurrent in gold-TiO2 nanocomposites. Nanoscale Res. Lett., 10 (2015).
[97] Y.C. Pu, G. Wang, K.D. Chang, Y. Ling, Y.K. Lin, B.C. Fitzmorris, C.M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.J. Hsu, Y. Li, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett., 13 (2013).
DOI: 10.1021/nl4018385
[98] C. Clavero, Plasmon-induced hot-electron generation at nanoparticle-metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 8 (2014) 95-103.
[99] X. Zhang, Y. Liu, S. -T. Lee, S. Yang, Z. Kang, Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energ. Environ. Sci., 7 (2014).
DOI: 10.1039/c3ee43278e
[100] M.J. Kale, T. Avanesian, P. Christopher, Direct photocatalysis by plasmonic nanostructures. ACS Catal., 4 (2014) 116-128.
DOI: 10.1021/cs400993w
[101] K. Ueno, H. Misawa, Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths. NPG Asia Mater., 5 (2013) e61.
DOI: 10.1038/am.2013.42
[102] F. Su, T. Wang, R. Lv, J. Zhang, P. Zhang, J. Lu, J. Gong, Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale, 5 (2013) 9001-9.
DOI: 10.1039/c3nr02766j
[103] M.Y. Xing, W.Z. Fang, M. Nasir, Y.F. Ma, J.L. Zhang, M. Anpo, Self-doped Ti3+ -enhanced TiO2 nanoparticles with a high-performance photocatalysis. J. Catal., 297 (2013) 236-243.
[104] J.Z. Zhang, Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Acc. Chem. Res., 30 (1997) 423-429.
DOI: 10.1021/ar960178j
[105] A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc., 129 (2007) 14852-14853.
DOI: 10.1021/ja076134v
[106] L. Du, A. Furube, K. Hara, R. Katoh, M. Tachiya, Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. J. Photoch. Photobio. C, 15 (2013) 21-30.
[107] Y.C. Pu, J.Z. Zhang, Mechanisms behind plasmonic enhancement of photocurrent in metal oxides. Austin J. Nanomed. Nanotechnol., 2 (2014) 1030.
[108] R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res., (2013) 130226090752004.
[109] G.M. Wang, Y.C. Ling, Y. Li, Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale, 4 (2012) 6682-6691.
DOI: 10.1039/c2nr32222f
[110] A. Minguzzi, C.M. Sanchez-Sanchez, A. Gallo, V. Montiel, S. Rondinini, Evidence of facilitated electron transfer on hydrogenated self‐doped TiO2 nanocrystals. ChemElectroChem, 1 (2014) 1415-1421.
[111] X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 331 (2011) 746-750.
[112] D.C. Cronemeyer, Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev., 113 (1959) 1222-1226.
[113] Y. Yang, Y.C. Ling, G.M. Wang, Y. Li, The effect of the hydrogenation temperature on TiO2 nanostructures for photoelectrochemical water oxidation. Eur. J. Inorg. Chem., (2014) 760-766.
[114] X.Y. Pan, M.Q. Yang, X.Z. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale, 5 (2013) 3601-3614.
DOI: 10.1039/c3nr00476g
[115] F.M. Pesci, G.M. Wang, D.R. Klug, Y. Li, A.J. Cowan, Efficient suppression of electron hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C, 117 (2013) 25837-25844.
DOI: 10.1021/jp4099914
[116] M. Samiee, J. Luo, Enhancing the visible-light photocatalytic activity of TiO2 by heat treatments in reducing environments. Mater. Lett., 98 (2013) 205-208.
[117] T. Xia, W. Zhang, J.B. Murowchick, G. Liu, X.B. Chen, A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv. Energy Mater., 3 (2013) 1516-1523.
[118] T. Xia, Y.L. Zhang, J. Murowchick, X.B. Chen, Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catal. Today, 225 (2014) 2-9.
[119] Y.H. Lv, Y.Y. Zhu, Y.F. Zhu, Enhanced photocatalytic performance for the BiPO4-x nanorod induced by surface oxygen vacancy. J. Phys. Chem. C, 117 (2013) 18520-18528.
DOI: 10.1021/jp405596e
[120] T. Nakajima, T. Nakamura, K. Shinoda, T. Tsuchiya, Rapid formation of black titania photoanodes: pulsed laser-induced oxygen release and enhanced solar water splitting efficiency. J. Mater. Chem. A, 2 (2014) 6762-6771.
DOI: 10.1039/c4ta00557k
[121] K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y.J. Zhang, J.H. Ye, Self-doped SrTiO3-delta photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energ. Environ. Sci., 4 (2011) 4211-4219.
DOI: 10.1039/c1ee01594j
[122] B. Choudhury, A. Choudhury, Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase-rutile mixed phase and of rutile phases of TiO2 nanoparticles. Physica E Low Dimens Syst Nanostruct., 56 (2014).
[123] F.C. Lei, Y.F. Sun, K.T. Liu, S. Gao, L. Liang, B.C. Pan, Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc., 136 (2014) 6826-6829.
DOI: 10.1021/ja501866r
[124] A.W. Pu, J.J. Deng, M. Li, J. Gao, H. Zhang, Y.Y. Hao, J. Zhong, X.H. Sun, Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. J. Mater. Chem. A, 2 (2014) 2491-2497.
DOI: 10.1039/c3ta14575a
[125] M. Nagoshi, T. Suzuki, Y. Fukuda, K. Terashima, Y. Nakanishi, M. Ogita, A. Tokiwa, Y. Syono, M. Tachiki, Oxygen-loss effects on superconductivity of Bi2Sr2 CaCu2Oy system. Phys. Rev. B, 43 (1991) 10445-10450.
[126] H.Y. Wang, G.M. Wang, Y.C. Ling, M. Lepert, C.C. Wang, J.Z. Zhang, Y. Li, Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale, 4 (2012) 1463-1466.
DOI: 10.1039/c2nr11278g
[127] Z.H. Zhang, M.N. Hedhili, H.B. Zhu, P. Wang, Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys. Chem. Chem. Phys, 15 (2013) 15637-15644.
DOI: 10.1039/c3cp52759j
[128] B.H. Meekins, P.V. Kamat, Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. Acs Nano, 3 (2009) 3437-3446.
DOI: 10.1021/nn900897r
[129] S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297 (2002) 2243-2245.
[130] A.B. Murphy, Does carbon doping of TiO2 allow water splitting in visible light? Comments on Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting,. Energy Mater. Sol. Cells, 92 (2008) 363-367.
[131] F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, P.Y. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc., 132 (2010) 11856-11857.
DOI: 10.1021/ja103843d
[132] F. Zuo, L. Wang, P.Y. Feng, Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity. Int. J. Hydrogen Energy, 39 (2014) 711-717.
[133] I.S. Cho, M. Logar, C.H. Lee, L.L. Cai, F.B. Prinz, X.L. Zheng, Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Nano Lett., 14 (2014) 24-31.
DOI: 10.1021/nl4026902
[134] Q. Kang, J.Y. Cao, Y.J. Zhang, L.Q. Liu, H. Xu, J.H. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A, 1 (2013) 5766-5774.
DOI: 10.1039/c3ta10689f
[135] W.Z. Fang, M.Y. Xing, J.L. Zhang, A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl. Catal. B-Environ., 160-161 (2014) 240-246.
[136] C.Y. Mao, F. Zuo, Y. Hou, X.H. Bu, P.Y. Feng, In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew. Chem. Int. Ed., 53 (2014) 10485-10489.
[137] T.Q. Lin, C.Y. Yang, Z. Wang, H. Yin, X.J. Lu, F.Q. Huang, J.H. Lin, X.M. Xie, M.H. Jiang, Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energ. Environ. Sci., 7 (2014) 967-972.
DOI: 10.1039/c3ee42708k
[138] C.Y. Yang, Z. Wang, T.Q. Lin, H. Yin, X.J. Lu, D.Y. Wan, T. Xu, C. Zheng, J.H. Lin, F.Q. Huang, X.M. Xie, M.H. Jiangl, Core-shell nanostructured Black, rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc., 135 (2013).
DOI: 10.1021/ja4076748
[139] Z. Wang, C.Y. Yang, T.Q. Lin, H. Yin, P. Chen, D.Y. Wan, F.F. Xu, F.Q. Huang, J.H. Lin, X.M. Xie, M.H. Jiang, Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energ. Environ. Sci., 6 (2013).
DOI: 10.1039/c3ee41817k
[140] G.L. Zhu, T.Q. Lin, X.J. Lu, W. Zhao, C.Y. Yang, Z. Wang, H. Yin, Z.Q. Liu, F.Q. Huang, J.H. Lin, Black brookite titania with high solar absorption and excellent photocatalytic performance. J. Mater. Chem. A, 1 (2013) 9650-9653.
DOI: 10.1039/c3ta11782k
[141] H.L. Cui, W. Zhao, C.Y. Yang, H. Yin, T.Q. Lin, Y.F. Shan, Y. Xie, H. Gu, F.Q. Huang, Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J. Mater. Chem. A, 2 (2014) 8612-8616.
DOI: 10.1039/c4ta00176a
[142] H. Yin, T.Q. Lin, C.Y. Yang, Z. Wang, G.L. Zhu, T. Xu, X.M. Xie, F.Q. Huang, M.H. Jiang, Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chem. Eur. J., 19 (2013).
[143] W.H. Sapuera, G. Mul, M.S. Hamdy, Ti3+-containing titania: Synthesis tactics and photocatalytic performance. Catal. Today, 246 (2015): 60-66.
[144] H. Tan, Z. Zhao, M. Niu, C. Mao, D. Cao, D. Cheng, P. Feng, Z. Sun, A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale, 6 (2014) 10216-23.
DOI: 10.1039/c4nr02677b
[145] S. Tominaka, Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors. Inorg. Chem., 51 (2012) 10136-10140.
DOI: 10.1021/ic300557u
[146] Z.X. Pei, L.Y. Ding, H. Lin, S.X. Weng, Z.Y. Zheng, Y.D. Hou, P. Liu, Facile synthesis of defect-mediated TiO2-x with enhanced visible light photocatalytic activity. J. Mater. Chem. A, 1 (2013) 10099-10102.
DOI: 10.1039/c3ta12062g
[147] X. Liu, S.M. Gao, H. Xu, Z.Z. Lou, W.J. Wang, B.B. Huang, Y. Dai, Green synthetic approach for Ti3+ self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity. Nanoscale, 5 (2013) 1870-1875.
DOI: 10.1039/c2nr33563h
[148] L.R. Grabstanowicz, S.M. Gao, T. Li, R.M. Rickard, T. Rajh, D.J. Liu, T. Xu, Facile oxidative conversion of TiH2 to high-concentration Ti3+- self-doped rutile TiO2 with visible-light photoactivity. Inorg. Chem., 52 (2013) 3884-3890.
DOI: 10.1021/ic3026182
[149] Q. Zhu, Y. Peng, L. Lin, C.M. Fan, G.Q. Gao, R.X. Wang, A.W. Xu, Stable blue TiO2-x nanoparticles for efficient visible light photocatalysts. J. Mater. Chem. A, 2 (2014) 4429-4437.
DOI: 10.1039/c3ta14484d
[150] F. Zuo, K. Bozhilov, R.J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P.Y. Feng, Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem. Int. Ed., 51 (2012).
[151] J.Y. Dong, J. Han, Y.S. Liu, A. Nakajima, S. Matsushita, S.H. Wei, W. Gao, Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Appl. Mater. Inter., 6 (2014) 1385-1388.
DOI: 10.1021/am405549p
[152] J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett., 6 (2006) 24-28.
DOI: 10.1021/nl051807y
[153] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293 (2001) 269-271.
[154] C.R. Phipps, Ultrashort pulses for impulse generation in laser propulsion applications. Laser Interaction and Related Plasma Phenomena - 13th International Conference, (1997) 477-484.
DOI: 10.1063/1.53564
[155] J.Z. Zhang, Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. Journal of Physical Chemistry B, 104 (2000) 7239-7253.
DOI: 10.1021/jp000594s
[156] J.Z. Zhang, Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Acc. Chem. Res., 30 (1997) 423-429.
DOI: 10.1021/ar960178j
[157] N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H.M. Deng, J.Z. Zhang, Ultrafast studies of photoexcited electron dynamics in gamma- and alpha-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B, 102 (1998) 770-776.
DOI: 10.1021/jp973149e
[158] Y.C. Ling, G.M. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett., 11 (2011) 2119-2125.
DOI: 10.1021/nl200708y
[159] J.Z. Zhang, Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B, 104 (2000) 7239-7253.
DOI: 10.1021/jp000594s
[160] J.Z. Zhang, Optical properties and spectroscopy of nanomaterials. 2009: World Scientific.
[161] F. Wu, J.H. Yu, J. Joo, T. Hyeon, J.Z. Zhang, Ultrafast electronic dynamics of monodisperse PbS and CdS nanoparticles/nanorods: Effects of size on nonlinear relaxation. Opt. Mater., 29 (2007) 858-866.
[162] T.J. Norman, D. Magana, T. Wilson, C. Burns, J.Z. Zhang, D. Cao, F. Bridges, optical and surface structural properties of Mn2+-doped ZnSe nanoparticles. J. Phys. Chem. B, 107 (2003) 6309-6317.
DOI: 10.1021/jp027804g
[163] B.C. Fitzmorris, Y.C. Pu, J.K. Cooper, Y.F. Lin, Y.J. Hsu, Y. Li, J.Z. Zhang, Optical properties and exciton dynamics of alloyed core/shell/shell Cd1-xZnxSe/ZnSe/ZnS quantum dots. ACS Appl. Mater. Interfaces, 5 (2013) 2893-900.
DOI: 10.1021/am303149r
[164] B.C. Fitzmorris, G.K. Larsen, D.A. Wheeler, Y. Zhao, J.Z. Zhang, Ultrafast charge transfer dynamics in polycrystalline CdSe/TiO2 nanorods prepared by oblique angle codeposition. J. Phys. Chem. C, 116 (2012) 5033-5041.
DOI: 10.1021/jp2121752
[165] D.A. Wheeler, J. -A. Huang, R.J. Newhouse, W. -F. Zhang, S. -T. Lee, J.Z. Zhang, Ultrafast exciton dynamics in silicon nanowires. J. Phys. Chem. Lett., 3 (2012) 766-771.
DOI: 10.1021/jz201597j
[166] J.K. Cooper, J. Cao, J.Z. Zhang, Exciton dynamics of CdS thin films produced by chemical bath deposition and DC pulse sputtering. ACS Appl. Mater. Interfaces, 5 (2013) 7544-51.
DOI: 10.1021/am4018362
[167] J.K. Cooper, Y. Ling, C. Longo, Y. Li, J.Z. Zhang, Effects of hydrogen treatment and air annealing on ultrafast charge carrier dynamics in ZnO nanowires under in situ photoelectrochemical conditions. J. Phys. Chem. C, 116 (2012) 17360-17368.
DOI: 10.1021/jp304428t
[168] D.A. Wheeler, J.Z. Zhang, Exciton dynamics in semiconductor nanocrystals. Adv. Mater., 25 (2013) 2878-96.
[169] Y. Ling, J.K. Cooper, Y. Yang, G. Wang, L. Munoz, H. Wang, J.Z. Zhang, Y. Li, Chemically modified titanium oxide nanostructures for dye-sensitized solar cells. Nano Energy, 2 (2013) 1373-1382.
[170] S. Shen, P. Guo, D.A. Wheeler, J. Jiang, S.A. Lindley, C.X. Kronawitter, J.Z. Zhang, L. Guo, S.S. Mao, Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Nanoscale, 5 (2013) 9867-74.
DOI: 10.1039/c3nr03245k
[171] B.C. Fitzmorris, J.M. Patete, J. Smith, X. Mascorro, S. Adams, S.S. Wong, J.Z. Zhang, Ultrafast transient absorption studies of hematite nanoparticles: The effect of particle shape on exciton dynamics. ChemSusChem, 6 (2013) 1907-(1914).
[172] D.A. Wheeler, Y.C. Ling, R.J. Dillon, R.C. Fitzmorris, C.G. Dudzik, L. Zavodivker, T. Rajh, N.M. Dimitrijevic, G. Millhauser, C. Bardeen, Y. Li, J.Z. Zhang, Probing the nature of bandgap states in hydrogen-treated TiO2 nanowires. J. Phys. Chem. C, 117 (2013).
DOI: 10.1021/jp409857j
[173] D.A. Wheeler, G.M. Wang, Y.C. Ling, Y. Li, J.Z. Zhang, Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energ. Environ. Sci., 5 (2012) 6682-6702.
DOI: 10.1039/c2ee00001f
[174] J.K. Cooper, Y.C. Ling, C. Longo, Y. Li, J.Z. Zhang, Effects of hydrogen treatment and air annealing on ultrafast charge carrier dynamics in ZnO nanowires under in situ photoelectrochemical conditions. J. Phys. Chem. C, 116 (2012) 17360-17368.
DOI: 10.1021/jp304428t
[175] D.P. Millar, Time-resolved fluorescence spectroscopy. Curr. Opin. Struct. Biol., 6 (1996) 637-642.
[176] G. Schlegel, J. Bohnenberger, I. Potapova, A. Mews, Fluorescence decay time of single semiconductor nanocrystals. Phys. Rev. Lett., 88 (2002).
[177] S. Gul, J.K. Cooper, C. Corrado, B. Vollbrecht, F. Bridges, J. Guo, J.Z. Zhang, Synthesis, optical and structural properties, and charge carrier dynamics of Cu-doped ZnSe nanocrystals. J. Phys. Chem. C, 115 (2011) 20864-20875.
DOI: 10.1021/jp2047272
[178] B.C. Fitzmorris, J.K. Cooper, J. Edberg, S. Gul, J. Guo, J.Z. Zhang, Synthesis and structural, optical, and dynamic properties of core/shell/shell CdSe/ZnSe/ZnS quantum dots. J. Phys. Chem. C, 116 (2012) 25065-25073.
DOI: 10.1021/jp3092013
[179] S. Gul, J.K. Cooper, P. -A. Glans, J. Guo, V.K. Yachandra, J. Yano, J.Z. Zhang, Effect of Al3+ co-doping on the dopant local structure, optical properties, and exciton dynamics in Cu+‑doped ZnSe nanocrystals. ACS Nano, 7 (2013) 8680-8692.
DOI: 10.1021/nn402932q
[180] D.C. Cronemeyer, M.A. Gilleo, The optical absorption and photoconductivity of rutile. Phys. Rev., 82 (1951) 975-976.
[181] A.J. Cowan, J.W. Tang, W.H. Leng, J.R. Durrant, D.R. Klug, Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C, 114 (2010) 4208-4214.
DOI: 10.1021/jp909993w
[182] S.R. Pendlebury, M. Barroso, A.J. Cowan, K. Sivula, J.W. Tang, M. Gratzel, D. Klug, J.R. Durrant, Dynamics of photogenerated holes in nanocrystalline alpha-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem. Commun., 47 (2011).
DOI: 10.1039/c0cc03627g
[183] F. Le Formal, S.R. Pendlebury, M. Cornuz, S.D. Tilley, M. Gratzel, J.R. Durrant, Back electron-hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc., 136 (2014) 2564-2574.
DOI: 10.1021/ja412058x