Metal Oxide BiVO4 as Photoelectrode in Photoelectrochemical Solar Water Oxidation

Article Preview

Abstract:

One of the great challenges facing the society today is replacing fossil fuels by renewable energy sources. Hydrogen from non-carbon sources is considered one of the viable potentials to help alleviate reliance upon fossil fuels for energy and addressing the environmental problems. Photoelectrochemical water splitting was brought to attention since the pioneering work in 1972. Since then, numerous metal oxide photocatalysts have been investigated to enhance the overall water splitting performance. Up to now, Bismuth vanadate, BiVO4 has emerged as the most promising photocatalyst in the construction of photoelectrochemical cell utilizing sunlight and water, the most abundant resources on earth. In this review, the principles, critical factors influencing the efficient BiVO4-based photoanode properties such as the crystal and electronic properties are discussed. Subsequently, the methods synthesis and research efforts adopted to develop efficient and active BiVO4 photoanode are presented.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 253)

Pages:

41-58

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Williams, Becquerel photovoltaic effect in binary compounds, J. Chem. Phys., 32 (1960) 1505.

Google Scholar

[2] K. Fujishima, A. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.

DOI: 10.1038/238037a0

Google Scholar

[3] C. -H. Liao, C. -W. Huang, and J.C.S. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting, Catalysts, 2 (2012) 490–516.

DOI: 10.3390/catal2040490

Google Scholar

[4] S. Licht, Multiple bandgap semiconductor/electrolyte solar energy conversion, J. Phys. Chem. B, 105 (2001) 6281–6249.

Google Scholar

[5] T. Hirai, K. Maeda, M. Yoshida, J. Kubota, S. Ikeda, M. Matsumura and K. Domen, Origin of visible light absorption in GaN-rich (Ga1-xZnx) (N1-x Ox) Photocatalysts, J. Phys. Chem. C, 111 (2007) 18853-18855.

DOI: 10.1021/jp709811k

Google Scholar

[6] K. Maeda, Photocatalytic water splitting using semiconductor particles: history and recent developments, J. Photochem. Photobiol. C. Photochem. Rev., 12 (2011) 237–268.

Google Scholar

[7] H.K. Timmaji, Bismuth-based oxide semiconductors: mild synthesis and practical applications, University of Texas at Arlington (2011).

Google Scholar

[8] Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen and M. Yashima, Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light, J. Phys. Chem. C, 111 (2007) 1042-1048.

DOI: 10.1021/jp0656532

Google Scholar

[9] K. Domen, S. Naito, M. Soma, T. Onishi, K. Tamaru, Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst, J. Chem. Soc., Chem. Commun., 12 (1980) 543-544.

DOI: 10.1039/c39800000543

Google Scholar

[10] S. Sato, J.M. White, Photodecomposition of water over Pt/TiO2 catalysts, Chem. Phys. Lett., 72, (1980) 83-86.

DOI: 10.1016/0009-2614(80)80246-6

Google Scholar

[11] J. M Lehn, J.P. Sauvage, R. Ziessel, Photochemical water splitting. Continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate, Nouv J. Chim., 4 (1980) 623-627.

Google Scholar

[12] K. Domen, S. Naito, T. Onishi, K. Tamaru, Photocatalytic decomposition of liquid water on a NiO-SrTiO3 catalyst, Chem. Phy. Lett., 92 (1982) 433-434.

DOI: 10.1016/0009-2614(82)83443-x

Google Scholar

[13] G.A. Somorjai, J.E. Turner, Catalyzed photodissociation of water-the first step in inorganic photosynthesis, Naturwissenschaften, 71 (1984) 575–577.

DOI: 10.1007/bf01189181

Google Scholar

[14] A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253–278.

DOI: 10.1039/b800489g

Google Scholar

[15] F.F. Abdi, Towards highly efficient bias-free solar water splitting, National University of Singapore (2013).

Google Scholar

[16] S.S. Yarahmadi, Preparation and performance of nanostructured iron oxide thin films for solar hydrogen generation, Loughborough University (2012).

Google Scholar

[17] A.B. Ellis, S.W. Kaiser, J.M. Bolts, M.S. Wrighton, Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolyte, J. Am. Chem. Soc., 99 (1977) 2839-2848.

DOI: 10.1021/ja00451a001

Google Scholar

[18] S. Chandra, Photoelectrochemical Solar Cells, Gordon and Breach, New York, NY, USA, (1985).

Google Scholar

[19] Z. Chen, H.N. Dinh, and E. Miller, Photoelectrochemical water splitting standards, experimental methods, and protocols, Springer New York Heidelberg Dordrecht London, (2013).

Google Scholar

[20] H. Müllejans, A. Ioannides, R. Kenny, W. Zaaiman, H.A. Ossenbrink, E.D. Dunlop, Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method, Meas. Sci. Technol., 16 (2005) 1250–1254.

DOI: 10.1088/0957-0233/16/6/002

Google Scholar

[21] G.P. Smestad, F.C. Krebs, C.M. Lampert, C.G. Granqvist, K.L. Chopra, X. Mathew and H. Takakura, Reporting solar cell efficiencies in solar energy materials and solar cells, Sol. Energy Mater. Sol. Cells, 92 (2008) 371–373.

DOI: 10.1016/j.solmat.2008.01.003

Google Scholar

[22] A.J. Nozik, Photoelectrolysis of water using semiconducting TiO2 crystals, Nature, 257 (1975) 383–386.

DOI: 10.1038/257383a0

Google Scholar

[23] O.K. Varghese, C.A. Grimes, Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells. A review with examples using titania nanotube array photoanodes, Sol. Energy Mater. Sol. Cells, 92 (2008) 374–384.

DOI: 10.1016/j.solmat.2007.11.006

Google Scholar

[24] A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes, Int. J. Hydrogen Energy, 31 (2006) 1999–(2017).

DOI: 10.1016/j.ijhydene.2006.01.014

Google Scholar

[25] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano Lett., 5 (2005) 191–195.

DOI: 10.1021/nl048301k

Google Scholar

[26] H.M. Chen, C.K. Chen, R. -S. Liu, L. Zhang, J. Zhang, D.P. Wilkinson, Nano-architecture and material designs for water splitting photoelectrodes, Chem. Soc. Rev., 41 (2012) 5654–5671.

DOI: 10.1039/c2cs35019j

Google Scholar

[27] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catal. Letters, 53 (1998) 229–230.

Google Scholar

[28] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc., 121 (1999).

DOI: 10.1002/chin.200012027

Google Scholar

[29] K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe and H. Arakawa, Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light, Chem. Commun., 23 (2003) 2908–2909.

DOI: 10.1039/b310428a

Google Scholar

[30] S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater., 13 (2001) 4624– 4628.

DOI: 10.1021/cm0103390

Google Scholar

[31] Y. Park, K.J. McDonald, K-S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev., 42 (2013) 2321–2337.

DOI: 10.1039/c2cs35260e

Google Scholar

[32] Z. Zhao, Z. Li, and Z. Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Phys. Chem. Chem. Phys., 13 (2011) 4746–4753.

DOI: 10.1039/c0cp01871f

Google Scholar

[33] A.W. Sleight, H. -Y. Chen, and A. Ferretti, Crystal growth and structure of BiVO4, Mater. Res. Bull., 14 (1979) 1571–1581.

DOI: 10.1016/0025-5408(72)90227-9

Google Scholar

[34] W.H. Qurashi, M.M., Barnes, The structure of pucherite BiVO4, Am. Minerologist., 37 (1952) 423–426.

Google Scholar

[35] Y. Inoue, T. Kubokawa and K. Sato, Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water, J. Phys. Chem., 95 (1991) 4059-4063.

DOI: 10.1021/j100163a032

Google Scholar

[36] Z. Zhao, W. Luo, Z. Li and Z. Zou, Density functional theory study of doping effects in monoclinic clinobisvanite BiVO4, Phys. Lett. A, 374, (2010) 4919-4927.

DOI: 10.1016/j.physleta.2010.10.014

Google Scholar

[37] A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassim and S-H. Wei, Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals, Chem. Mater., 21 (2009) 547–551.

DOI: 10.1021/cm802894z

Google Scholar

[38] L.E. Scriven, Physics and applications of dip coating and spin coating, Materials Research Society Symposium Proceedings, 121 (1988) 717–729.

Google Scholar

[39] W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, and Z. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energy Environ. Sci., 4 (2011) 4046-4051.

DOI: 10.1039/c1ee01812d

Google Scholar

[40] D.K. Zhong, S. Choi, and D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by Co-Pi, catalyst-modified W: BiVO4, J. Am. Chem. Soc., 133 (2011) 18370.

DOI: 10.1021/ja207348x

Google Scholar

[41] M.C. Neves, T. Trindade, Chemical bath deposition of BiVO4, Thin Solid Films, 406 (2002) 93–97.

DOI: 10.1016/s0040-6090(01)01787-4

Google Scholar

[42] G. Xi and J. Ye, Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible light photocatalytic properties, Chem. Commun., 46 (2010) 1893–1895.

DOI: 10.1039/b923435g

Google Scholar

[43] D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, C. Li, Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst, J. Phys. Chem. C, 116 (2012).

DOI: 10.1021/jp210584b

Google Scholar

[44] J. Yu and A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater., 16 (2006) 2163– 2169.

DOI: 10.1002/adfm.200500799

Google Scholar

[45] Y. Zhao, Y. Xie, X. Zhu, S. Yan, S. Wang, Surfactant-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries, Chem. Eur. J., 14 (2008) 1601–1606.

DOI: 10.1002/chem.200701053

Google Scholar

[46] J.A. Seabold, and K-S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst, J. Am. Chem. Soc., 134, (2012) 2186–2192.

DOI: 10.1021/ja209001d

Google Scholar

[47] C. Ding, J. Shi, D. Wang, Z. Wang, N. Wang, G. Liu, F. Xiong, C. Li, Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias, Phys. Chem. Chem. Phys, 15 (2013) 4589-4595.

DOI: 10.1039/c3cp50295c

Google Scholar

[48] K.L. Choy, Chemical vapor deposition of coatings, Prog. Mater. Sci., 48 (2003) 57–170.

Google Scholar

[49] E. Alarco, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey and J.W. Ager, BiVO4 thin film photoanodes grown by chemical vapor deposition, Phys. Chem. Chem. Phys., 16 (2014) 1651–1657.

DOI: 10.1039/c3cp53904k

Google Scholar

[50] K. -L. Choy, Special issue on aerosol-assisted chemical vapor deposition, Chem. Vap. Deposition, 12 (2006) 577–637.

DOI: 10.1002/cvde.200690021

Google Scholar

[51] S.N.F. Mohd-Nasir, M.A. Mat-Teridi, M. Ebadi, J.S. Sagu, M.Y. Sulaiman, N. A-Ludin, M.A. Ibrahim, Influence of ethylene glycol on efficient photoelectrochemical activity of BiVO4 photoanode via AACVD, Phys. Status Solidi A, accepted, (2015).

DOI: 10.1002/pssa.201532622

Google Scholar

[52] P. Chatchai, Y. Murakami, S. -ya. Kishioka, A.Y. Nosaka, and Y. Nosaka, Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation, Electrochim. Acta, 54 (2009) 1147–1152.

DOI: 10.1016/j.electacta.2008.08.058

Google Scholar

[53] K. Sayama, N. Wang, Y. Miseki, H. Kusama, N. Onozawa-Komatsuzaki, H. Sugihara, Effect of carbonate ions on the photooxidation of water over porous BiVO4 film photoelectrode under visible light, Chem. Soc. Japan, 39 (2010) 17-19.

DOI: 10.1246/cl.2010.17

Google Scholar

[54] W. Luo, Z. Wang, L. Wan, Z. Li, T. Yu, Z. Zou, Synthesis, growth mechanism and photoelectrochemical properties of BiVO4 microcrystal electrodes, J. Phys. D. Appl. Phys., 43 (2010) 405402.

DOI: 10.1088/0022-3727/43/40/405402

Google Scholar

[55] B. Zhou, J. Qu, X. Zhao, and H. Liu, Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode, J. Environ. Sci., 23 (2011) 151–159.

DOI: 10.1016/s1001-0742(10)60387-7

Google Scholar

[56] T.H. Jeon, W. Choi, H. Park, Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes water oxidation of BiVO4 electrodes, Phys. Chem. Chem. Phys., 13 (2011) 21392–21401.

DOI: 10.1039/c1cp23135a

Google Scholar

[57] R. Saito, Y. Miseki and K. Sayama, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte, Chem. Commun., 48 (2012) 3833–3835.

DOI: 10.1039/c2cc30713h

Google Scholar

[58] J. Jiang, M. Wang, R. Li, L. Ma, and L. Guo, Fabricating CdS/BiVO4 and BiVO4/CdS heterostructured film photoelectrodes for photoelectrochemical applications, Int. J. Hydrog. Energy, 38 (2013) 13069–13076.

DOI: 10.1016/j.ijhydene.2013.03.057

Google Scholar

[59] I. Fujimoto, N. Wang, R. Saito, Y. Miseki, T. Gunji, K. Sayama, WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting, Int. J. Hydrogen Energy, 39 (2013) 2454–2461.

DOI: 10.1016/j.ijhydene.2013.08.114

Google Scholar

[60] S. Ho-Kimura, S.J.A. Moniz, A.D. Handoko and J. Tang, Enhanced photoelectrochemical water splitting by nanostructured BiVO4–TiO2 composite electrodes, J. Mater. Chem. A, 2 (2014) 3948-3953.

DOI: 10.1039/c3ta15268e

Google Scholar

[61] K.P.S. Parmar, H.J. Kang, A. Bist, P. Dua, J.S. Jang and J.S. Lee, Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes, ChemSusChem., 5 (2012) 1926 – (1934).

DOI: 10.1002/cssc.201200254

Google Scholar

[62] W.J. Jo, J. -W. Jang, K. -j. Kong, H.J. Kang, J.Y. Kim, H. Jun, K.P.S. Parmar and J.S. Lee, Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity, Angew. Chemie Int. Ed., 51 (2012) 3147–3151.

DOI: 10.1002/anie.201108276

Google Scholar

[63] K. Zhang, X. -J. Shi, J.K. Kim, J.H. Park, Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers, Phys. Chem. Chem. Phys., 14 (2012) 11119–11124.

DOI: 10.1039/c2cp40991g

Google Scholar

[64] J. Su, L. Guo, N. Bao, C. A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting, Nano Lett., 11 (2011) 1928–(1933).

DOI: 10.1021/nl2000743

Google Scholar

[65] S.J. Hong, S. Lee, J.S. Jang and J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci., 4 (2011) 1781–1787.

DOI: 10.1039/c0ee00743a

Google Scholar

[66] S. Xie, T. Zhai, Y. Zhu, W. Li, R. Qiu, Y. Tong, X. Lu, NiO decorated Mo: BiVO4 photoanode with enhanced visible-light photoelectrochemical activity, Int. J. Hydrogen Energy, 39 (2014) 4820–4827.

DOI: 10.1016/j.ijhydene.2014.01.072

Google Scholar

[67] A. Iwase, Y. AH. Ng, Y. Ishiguro, A. Kudo and R. Amal, Reduced graphene oxide as a solid-state electron mediator in z-scheme photocatalytic water splitting under visible light, J. Am. Chem. Soc., 133 (2011) 11054–11057.

DOI: 10.1021/ja203296z

Google Scholar

[68] S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner and A.M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy Environ. Sci., 4 (2011) 5028-5034.

DOI: 10.1039/c1ee02444b

Google Scholar

[69] F.F. Abdi and R. van de Krol, Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes, J. Phys. Chem. C, 116 (2012) 9398-9404.

DOI: 10.1021/jp3007552

Google Scholar

[70] S.K. Pilli, T.G. Deutsch, T.E. Furtak, J.A. Turner, L.D. Brown and A.M. Herring, Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2–BiVO4 electrodes, Phys. Chem. Chem. Phys., 14 (2012).

DOI: 10.1039/c2cp40673j

Google Scholar

[71] M. Zhou, J. Bao, W. Bi, Y. Zeng, R. Zhu, M. Tao and Y. Xie, Efficient water splitting via a heteroepitaxial BiVO4 photoelectrode decorated with Co-Pi catalysts, ChemSusChem., 5 (2012) 1420-1425.

DOI: 10.1002/cssc.201200287

Google Scholar