Metal Oxide BiVO4 as Photoelectrode in Photoelectrochemical Solar Water Oxidation

Abstract:

Article Preview

One of the great challenges facing the society today is replacing fossil fuels by renewable energy sources. Hydrogen from non-carbon sources is considered one of the viable potentials to help alleviate reliance upon fossil fuels for energy and addressing the environmental problems. Photoelectrochemical water splitting was brought to attention since the pioneering work in 1972. Since then, numerous metal oxide photocatalysts have been investigated to enhance the overall water splitting performance. Up to now, Bismuth vanadate, BiVO4 has emerged as the most promising photocatalyst in the construction of photoelectrochemical cell utilizing sunlight and water, the most abundant resources on earth. In this review, the principles, critical factors influencing the efficient BiVO4-based photoanode properties such as the crystal and electronic properties are discussed. Subsequently, the methods synthesis and research efforts adopted to develop efficient and active BiVO4 photoanode are presented.

Info:

Periodical:

Solid State Phenomena (Volume 253)

Edited by:

Venkataraman Thangadurai, Yasuro Ikuma

Pages:

41-58

Citation:

S. N. F. Mohd Nasir et al., "Metal Oxide BiVO4 as Photoelectrode in Photoelectrochemical Solar Water Oxidation", Solid State Phenomena, Vol. 253, pp. 41-58, 2016

Online since:

August 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] R. Williams, Becquerel photovoltaic effect in binary compounds, J. Chem. Phys., 32 (1960) 1505.

[2] K. Fujishima, A. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.

DOI: https://doi.org/10.1038/238037a0

[3] C. -H. Liao, C. -W. Huang, and J.C.S. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting, Catalysts, 2 (2012) 490–516.

DOI: https://doi.org/10.3390/catal2040490

[4] S. Licht, Multiple bandgap semiconductor/electrolyte solar energy conversion, J. Phys. Chem. B, 105 (2001) 6281–6249.

[5] T. Hirai, K. Maeda, M. Yoshida, J. Kubota, S. Ikeda, M. Matsumura and K. Domen, Origin of visible light absorption in GaN-rich (Ga1-xZnx) (N1-x Ox) Photocatalysts, J. Phys. Chem. C, 111 (2007) 18853-18855.

DOI: https://doi.org/10.1021/jp709811k

[6] K. Maeda, Photocatalytic water splitting using semiconductor particles: history and recent developments, J. Photochem. Photobiol. C. Photochem. Rev., 12 (2011) 237–268.

[7] H.K. Timmaji, Bismuth-based oxide semiconductors: mild synthesis and practical applications, University of Texas at Arlington (2011).

[8] Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen and M. Yashima, Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light, J. Phys. Chem. C, 111 (2007) 1042-1048.

DOI: https://doi.org/10.1021/jp0656532

[9] K. Domen, S. Naito, M. Soma, T. Onishi, K. Tamaru, Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst, J. Chem. Soc., Chem. Commun., 12 (1980) 543-544.

DOI: https://doi.org/10.1039/c39800000543

[10] S. Sato, J.M. White, Photodecomposition of water over Pt/TiO2 catalysts, Chem. Phys. Lett., 72, (1980) 83-86.

DOI: https://doi.org/10.1016/0009-2614(80)80246-6

[11] J. M Lehn, J.P. Sauvage, R. Ziessel, Photochemical water splitting. Continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate, Nouv J. Chim., 4 (1980) 623-627.

[12] K. Domen, S. Naito, T. Onishi, K. Tamaru, Photocatalytic decomposition of liquid water on a NiO-SrTiO3 catalyst, Chem. Phy. Lett., 92 (1982) 433-434.

DOI: https://doi.org/10.1016/0009-2614(82)83443-x

[13] G.A. Somorjai, J.E. Turner, Catalyzed photodissociation of water-the first step in inorganic photosynthesis, Naturwissenschaften, 71 (1984) 575–577.

DOI: https://doi.org/10.1007/bf01189181

[14] A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253–278.

DOI: https://doi.org/10.1039/b800489g

[15] F.F. Abdi, Towards highly efficient bias-free solar water splitting, National University of Singapore (2013).

[16] S.S. Yarahmadi, Preparation and performance of nanostructured iron oxide thin films for solar hydrogen generation, Loughborough University (2012).

[17] A.B. Ellis, S.W. Kaiser, J.M. Bolts, M.S. Wrighton, Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolyte, J. Am. Chem. Soc., 99 (1977) 2839-2848.

DOI: https://doi.org/10.1021/ja00451a001

[18] S. Chandra, Photoelectrochemical Solar Cells, Gordon and Breach, New York, NY, USA, (1985).

[19] Z. Chen, H.N. Dinh, and E. Miller, Photoelectrochemical water splitting standards, experimental methods, and protocols, Springer New York Heidelberg Dordrecht London, (2013).

[20] H. Müllejans, A. Ioannides, R. Kenny, W. Zaaiman, H.A. Ossenbrink, E.D. Dunlop, Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method, Meas. Sci. Technol., 16 (2005) 1250–1254.

DOI: https://doi.org/10.1088/0957-0233/16/6/002

[21] G.P. Smestad, F.C. Krebs, C.M. Lampert, C.G. Granqvist, K.L. Chopra, X. Mathew and H. Takakura, Reporting solar cell efficiencies in solar energy materials and solar cells, Sol. Energy Mater. Sol. Cells, 92 (2008) 371–373.

DOI: https://doi.org/10.1016/j.solmat.2008.01.003

[22] A.J. Nozik, Photoelectrolysis of water using semiconducting TiO2 crystals, Nature, 257 (1975) 383–386.

DOI: https://doi.org/10.1038/257383a0

[23] O.K. Varghese, C.A. Grimes, Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells. A review with examples using titania nanotube array photoanodes, Sol. Energy Mater. Sol. Cells, 92 (2008) 374–384.

DOI: https://doi.org/10.1016/j.solmat.2007.11.006

[24] A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes, Int. J. Hydrogen Energy, 31 (2006) 1999–(2017).

DOI: https://doi.org/10.1016/j.ijhydene.2006.01.014

[25] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano Lett., 5 (2005) 191–195.

DOI: https://doi.org/10.1021/nl048301k

[26] H.M. Chen, C.K. Chen, R. -S. Liu, L. Zhang, J. Zhang, D.P. Wilkinson, Nano-architecture and material designs for water splitting photoelectrodes, Chem. Soc. Rev., 41 (2012) 5654–5671.

DOI: https://doi.org/10.1039/c2cs35019j

[27] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catal. Letters, 53 (1998) 229–230.

[28] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc., 121 (1999).

DOI: https://doi.org/10.1021/ja992541y

[29] K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe and H. Arakawa, Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light, Chem. Commun., 23 (2003) 2908–2909.

DOI: https://doi.org/10.1039/b310428a

[30] S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater., 13 (2001) 4624– 4628.

DOI: https://doi.org/10.1021/cm0103390

[31] Y. Park, K.J. McDonald, K-S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev., 42 (2013) 2321–2337.

DOI: https://doi.org/10.1039/c2cs35260e

[32] Z. Zhao, Z. Li, and Z. Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Phys. Chem. Chem. Phys., 13 (2011) 4746–4753.

DOI: https://doi.org/10.1039/c0cp01871f

[33] A.W. Sleight, H. -Y. Chen, and A. Ferretti, Crystal growth and structure of BiVO4, Mater. Res. Bull., 14 (1979) 1571–1581.

[34] W.H. Qurashi, M.M., Barnes, The structure of pucherite BiVO4, Am. Minerologist., 37 (1952) 423–426.

[35] Y. Inoue, T. Kubokawa and K. Sato, Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water, J. Phys. Chem., 95 (1991) 4059-4063.

DOI: https://doi.org/10.1021/j100163a032

[36] Z. Zhao, W. Luo, Z. Li and Z. Zou, Density functional theory study of doping effects in monoclinic clinobisvanite BiVO4, Phys. Lett. A, 374, (2010) 4919-4927.

DOI: https://doi.org/10.1016/j.physleta.2010.10.014

[37] A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassim and S-H. Wei, Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals, Chem. Mater., 21 (2009) 547–551.

DOI: https://doi.org/10.1021/cm802894z

[38] L.E. Scriven, Physics and applications of dip coating and spin coating, Materials Research Society Symposium Proceedings, 121 (1988) 717–729.

[39] W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, and Z. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energy Environ. Sci., 4 (2011) 4046-4051.

DOI: https://doi.org/10.1039/c1ee01812d

[40] D.K. Zhong, S. Choi, and D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by Co-Pi, catalyst-modified W: BiVO4, J. Am. Chem. Soc., 133 (2011) 18370.

DOI: https://doi.org/10.1021/ja207348x

[41] M.C. Neves, T. Trindade, Chemical bath deposition of BiVO4, Thin Solid Films, 406 (2002) 93–97.

DOI: https://doi.org/10.1016/s0040-6090(01)01787-4

[42] G. Xi and J. Ye, Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible light photocatalytic properties, Chem. Commun., 46 (2010) 1893–1895.

DOI: https://doi.org/10.1039/b923435g

[43] D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, C. Li, Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst, J. Phys. Chem. C, 116 (2012).

DOI: https://doi.org/10.1021/jp210584b

[44] J. Yu and A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater., 16 (2006) 2163– 2169.

DOI: https://doi.org/10.1002/adfm.200500799

[45] Y. Zhao, Y. Xie, X. Zhu, S. Yan, S. Wang, Surfactant-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries, Chem. Eur. J., 14 (2008) 1601–1606.

DOI: https://doi.org/10.1002/chem.200701053

[46] J.A. Seabold, and K-S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst, J. Am. Chem. Soc., 134, (2012) 2186–2192.

DOI: https://doi.org/10.1021/ja209001d

[47] C. Ding, J. Shi, D. Wang, Z. Wang, N. Wang, G. Liu, F. Xiong, C. Li, Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias, Phys. Chem. Chem. Phys, 15 (2013) 4589-4595.

DOI: https://doi.org/10.1039/c3cp50295c

[48] K.L. Choy, Chemical vapor deposition of coatings, Prog. Mater. Sci., 48 (2003) 57–170.

[49] E. Alarco, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey and J.W. Ager, BiVO4 thin film photoanodes grown by chemical vapor deposition, Phys. Chem. Chem. Phys., 16 (2014) 1651–1657.

DOI: https://doi.org/10.1039/c3cp53904k

[50] K. -L. Choy, Special issue on aerosol-assisted chemical vapor deposition, Chem. Vap. Deposition, 12 (2006) 577–637.

DOI: https://doi.org/10.1002/cvde.200690021

[51] S.N.F. Mohd-Nasir, M.A. Mat-Teridi, M. Ebadi, J.S. Sagu, M.Y. Sulaiman, N. A-Ludin, M.A. Ibrahim, Influence of ethylene glycol on efficient photoelectrochemical activity of BiVO4 photoanode via AACVD, Phys. Status Solidi A, accepted, (2015).

DOI: https://doi.org/10.1002/pssa.201532622

[52] P. Chatchai, Y. Murakami, S. -ya. Kishioka, A.Y. Nosaka, and Y. Nosaka, Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation, Electrochim. Acta, 54 (2009) 1147–1152.

DOI: https://doi.org/10.1016/j.electacta.2008.08.058

[53] K. Sayama, N. Wang, Y. Miseki, H. Kusama, N. Onozawa-Komatsuzaki, H. Sugihara, Effect of carbonate ions on the photooxidation of water over porous BiVO4 film photoelectrode under visible light, Chem. Soc. Japan, 39 (2010) 17-19.

DOI: https://doi.org/10.1246/cl.2010.17

[54] W. Luo, Z. Wang, L. Wan, Z. Li, T. Yu, Z. Zou, Synthesis, growth mechanism and photoelectrochemical properties of BiVO4 microcrystal electrodes, J. Phys. D. Appl. Phys., 43 (2010) 405402.

[55] B. Zhou, J. Qu, X. Zhao, and H. Liu, Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode, J. Environ. Sci., 23 (2011) 151–159.

DOI: https://doi.org/10.1016/s1001-0742(10)60387-7

[56] T.H. Jeon, W. Choi, H. Park, Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes water oxidation of BiVO4 electrodes, Phys. Chem. Chem. Phys., 13 (2011) 21392–21401.

DOI: https://doi.org/10.1039/c1cp23135a

[57] R. Saito, Y. Miseki and K. Sayama, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte, Chem. Commun., 48 (2012) 3833–3835.

DOI: https://doi.org/10.1039/c2cc30713h

[58] J. Jiang, M. Wang, R. Li, L. Ma, and L. Guo, Fabricating CdS/BiVO4 and BiVO4/CdS heterostructured film photoelectrodes for photoelectrochemical applications, Int. J. Hydrog. Energy, 38 (2013) 13069–13076.

DOI: https://doi.org/10.1016/j.ijhydene.2013.03.057

[59] I. Fujimoto, N. Wang, R. Saito, Y. Miseki, T. Gunji, K. Sayama, WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting, Int. J. Hydrogen Energy, 39 (2013) 2454–2461.

DOI: https://doi.org/10.1016/j.ijhydene.2014.01.101

[60] S. Ho-Kimura, S.J.A. Moniz, A.D. Handoko and J. Tang, Enhanced photoelectrochemical water splitting by nanostructured BiVO4–TiO2 composite electrodes, J. Mater. Chem. A, 2 (2014) 3948-3953.

DOI: https://doi.org/10.1039/c3ta15268e

[61] K.P.S. Parmar, H.J. Kang, A. Bist, P. Dua, J.S. Jang and J.S. Lee, Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes, ChemSusChem., 5 (2012) 1926 – (1934).

DOI: https://doi.org/10.1002/cssc.201200254

[62] W.J. Jo, J. -W. Jang, K. -j. Kong, H.J. Kang, J.Y. Kim, H. Jun, K.P.S. Parmar and J.S. Lee, Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity, Angew. Chemie Int. Ed., 51 (2012) 3147–3151.

DOI: https://doi.org/10.1002/anie.201108276

[63] K. Zhang, X. -J. Shi, J.K. Kim, J.H. Park, Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers, Phys. Chem. Chem. Phys., 14 (2012) 11119–11124.

DOI: https://doi.org/10.1039/c2cp40991g

[64] J. Su, L. Guo, N. Bao, C. A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting, Nano Lett., 11 (2011) 1928–(1933).

DOI: https://doi.org/10.1021/nl2000743

[65] S.J. Hong, S. Lee, J.S. Jang and J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci., 4 (2011) 1781–1787.

DOI: https://doi.org/10.1039/c0ee00743a

[66] S. Xie, T. Zhai, Y. Zhu, W. Li, R. Qiu, Y. Tong, X. Lu, NiO decorated Mo: BiVO4 photoanode with enhanced visible-light photoelectrochemical activity, Int. J. Hydrogen Energy, 39 (2014) 4820–4827.

DOI: https://doi.org/10.1016/j.ijhydene.2014.01.072

[67] A. Iwase, Y. AH. Ng, Y. Ishiguro, A. Kudo and R. Amal, Reduced graphene oxide as a solid-state electron mediator in z-scheme photocatalytic water splitting under visible light, J. Am. Chem. Soc., 133 (2011) 11054–11057.

DOI: https://doi.org/10.1021/ja203296z

[68] S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner and A.M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy Environ. Sci., 4 (2011) 5028-5034.

DOI: https://doi.org/10.1039/c1ee02444b

[69] F.F. Abdi and R. van de Krol, Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes, J. Phys. Chem. C, 116 (2012) 9398-9404.

DOI: https://doi.org/10.1021/jp3007552

[70] S.K. Pilli, T.G. Deutsch, T.E. Furtak, J.A. Turner, L.D. Brown and A.M. Herring, Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2–BiVO4 electrodes, Phys. Chem. Chem. Phys., 14 (2012).

DOI: https://doi.org/10.1039/c2cp40673j

[71] M. Zhou, J. Bao, W. Bi, Y. Zeng, R. Zhu, M. Tao and Y. Xie, Efficient water splitting via a heteroepitaxial BiVO4 photoelectrode decorated with Co-Pi catalysts, ChemSusChem., 5 (2012) 1420-1425.

DOI: https://doi.org/10.1002/cssc.201200287