[1]
R. Williams, Becquerel photovoltaic effect in binary compounds, J. Chem. Phys., 32 (1960) 1505.
Google Scholar
[2]
K. Fujishima, A. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
DOI: 10.1038/238037a0
Google Scholar
[3]
C. -H. Liao, C. -W. Huang, and J.C.S. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting, Catalysts, 2 (2012) 490–516.
DOI: 10.3390/catal2040490
Google Scholar
[4]
S. Licht, Multiple bandgap semiconductor/electrolyte solar energy conversion, J. Phys. Chem. B, 105 (2001) 6281–6249.
Google Scholar
[5]
T. Hirai, K. Maeda, M. Yoshida, J. Kubota, S. Ikeda, M. Matsumura and K. Domen, Origin of visible light absorption in GaN-rich (Ga1-xZnx) (N1-x Ox) Photocatalysts, J. Phys. Chem. C, 111 (2007) 18853-18855.
DOI: 10.1021/jp709811k
Google Scholar
[6]
K. Maeda, Photocatalytic water splitting using semiconductor particles: history and recent developments, J. Photochem. Photobiol. C. Photochem. Rev., 12 (2011) 237–268.
Google Scholar
[7]
H.K. Timmaji, Bismuth-based oxide semiconductors: mild synthesis and practical applications, University of Texas at Arlington (2011).
Google Scholar
[8]
Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen and M. Yashima, Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light, J. Phys. Chem. C, 111 (2007) 1042-1048.
DOI: 10.1021/jp0656532
Google Scholar
[9]
K. Domen, S. Naito, M. Soma, T. Onishi, K. Tamaru, Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst, J. Chem. Soc., Chem. Commun., 12 (1980) 543-544.
DOI: 10.1039/c39800000543
Google Scholar
[10]
S. Sato, J.M. White, Photodecomposition of water over Pt/TiO2 catalysts, Chem. Phys. Lett., 72, (1980) 83-86.
DOI: 10.1016/0009-2614(80)80246-6
Google Scholar
[11]
J. M Lehn, J.P. Sauvage, R. Ziessel, Photochemical water splitting. Continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate, Nouv J. Chim., 4 (1980) 623-627.
Google Scholar
[12]
K. Domen, S. Naito, T. Onishi, K. Tamaru, Photocatalytic decomposition of liquid water on a NiO-SrTiO3 catalyst, Chem. Phy. Lett., 92 (1982) 433-434.
DOI: 10.1016/0009-2614(82)83443-x
Google Scholar
[13]
G.A. Somorjai, J.E. Turner, Catalyzed photodissociation of water-the first step in inorganic photosynthesis, Naturwissenschaften, 71 (1984) 575–577.
DOI: 10.1007/bf01189181
Google Scholar
[14]
A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253–278.
DOI: 10.1039/b800489g
Google Scholar
[15]
F.F. Abdi, Towards highly efficient bias-free solar water splitting, National University of Singapore (2013).
Google Scholar
[16]
S.S. Yarahmadi, Preparation and performance of nanostructured iron oxide thin films for solar hydrogen generation, Loughborough University (2012).
Google Scholar
[17]
A.B. Ellis, S.W. Kaiser, J.M. Bolts, M.S. Wrighton, Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolyte, J. Am. Chem. Soc., 99 (1977) 2839-2848.
DOI: 10.1021/ja00451a001
Google Scholar
[18]
S. Chandra, Photoelectrochemical Solar Cells, Gordon and Breach, New York, NY, USA, (1985).
Google Scholar
[19]
Z. Chen, H.N. Dinh, and E. Miller, Photoelectrochemical water splitting standards, experimental methods, and protocols, Springer New York Heidelberg Dordrecht London, (2013).
Google Scholar
[20]
H. Müllejans, A. Ioannides, R. Kenny, W. Zaaiman, H.A. Ossenbrink, E.D. Dunlop, Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method, Meas. Sci. Technol., 16 (2005) 1250–1254.
DOI: 10.1088/0957-0233/16/6/002
Google Scholar
[21]
G.P. Smestad, F.C. Krebs, C.M. Lampert, C.G. Granqvist, K.L. Chopra, X. Mathew and H. Takakura, Reporting solar cell efficiencies in solar energy materials and solar cells, Sol. Energy Mater. Sol. Cells, 92 (2008) 371–373.
DOI: 10.1016/j.solmat.2008.01.003
Google Scholar
[22]
A.J. Nozik, Photoelectrolysis of water using semiconducting TiO2 crystals, Nature, 257 (1975) 383–386.
DOI: 10.1038/257383a0
Google Scholar
[23]
O.K. Varghese, C.A. Grimes, Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells. A review with examples using titania nanotube array photoanodes, Sol. Energy Mater. Sol. Cells, 92 (2008) 374–384.
DOI: 10.1016/j.solmat.2007.11.006
Google Scholar
[24]
A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes, Int. J. Hydrogen Energy, 31 (2006) 1999–(2017).
DOI: 10.1016/j.ijhydene.2006.01.014
Google Scholar
[25]
G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano Lett., 5 (2005) 191–195.
DOI: 10.1021/nl048301k
Google Scholar
[26]
H.M. Chen, C.K. Chen, R. -S. Liu, L. Zhang, J. Zhang, D.P. Wilkinson, Nano-architecture and material designs for water splitting photoelectrodes, Chem. Soc. Rev., 41 (2012) 5654–5671.
DOI: 10.1039/c2cs35019j
Google Scholar
[27]
A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catal. Letters, 53 (1998) 229–230.
Google Scholar
[28]
A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc., 121 (1999).
DOI: 10.1002/chin.200012027
Google Scholar
[29]
K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe and H. Arakawa, Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light, Chem. Commun., 23 (2003) 2908–2909.
DOI: 10.1039/b310428a
Google Scholar
[30]
S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater., 13 (2001) 4624– 4628.
DOI: 10.1021/cm0103390
Google Scholar
[31]
Y. Park, K.J. McDonald, K-S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev., 42 (2013) 2321–2337.
DOI: 10.1039/c2cs35260e
Google Scholar
[32]
Z. Zhao, Z. Li, and Z. Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Phys. Chem. Chem. Phys., 13 (2011) 4746–4753.
DOI: 10.1039/c0cp01871f
Google Scholar
[33]
A.W. Sleight, H. -Y. Chen, and A. Ferretti, Crystal growth and structure of BiVO4, Mater. Res. Bull., 14 (1979) 1571–1581.
DOI: 10.1016/0025-5408(72)90227-9
Google Scholar
[34]
W.H. Qurashi, M.M., Barnes, The structure of pucherite BiVO4, Am. Minerologist., 37 (1952) 423–426.
Google Scholar
[35]
Y. Inoue, T. Kubokawa and K. Sato, Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water, J. Phys. Chem., 95 (1991) 4059-4063.
DOI: 10.1021/j100163a032
Google Scholar
[36]
Z. Zhao, W. Luo, Z. Li and Z. Zou, Density functional theory study of doping effects in monoclinic clinobisvanite BiVO4, Phys. Lett. A, 374, (2010) 4919-4927.
DOI: 10.1016/j.physleta.2010.10.014
Google Scholar
[37]
A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassim and S-H. Wei, Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals, Chem. Mater., 21 (2009) 547–551.
DOI: 10.1021/cm802894z
Google Scholar
[38]
L.E. Scriven, Physics and applications of dip coating and spin coating, Materials Research Society Symposium Proceedings, 121 (1988) 717–729.
Google Scholar
[39]
W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, and Z. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energy Environ. Sci., 4 (2011) 4046-4051.
DOI: 10.1039/c1ee01812d
Google Scholar
[40]
D.K. Zhong, S. Choi, and D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by Co-Pi, catalyst-modified W: BiVO4, J. Am. Chem. Soc., 133 (2011) 18370.
DOI: 10.1021/ja207348x
Google Scholar
[41]
M.C. Neves, T. Trindade, Chemical bath deposition of BiVO4, Thin Solid Films, 406 (2002) 93–97.
DOI: 10.1016/s0040-6090(01)01787-4
Google Scholar
[42]
G. Xi and J. Ye, Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible light photocatalytic properties, Chem. Commun., 46 (2010) 1893–1895.
DOI: 10.1039/b923435g
Google Scholar
[43]
D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, C. Li, Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst, J. Phys. Chem. C, 116 (2012).
DOI: 10.1021/jp210584b
Google Scholar
[44]
J. Yu and A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater., 16 (2006) 2163– 2169.
DOI: 10.1002/adfm.200500799
Google Scholar
[45]
Y. Zhao, Y. Xie, X. Zhu, S. Yan, S. Wang, Surfactant-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries, Chem. Eur. J., 14 (2008) 1601–1606.
DOI: 10.1002/chem.200701053
Google Scholar
[46]
J.A. Seabold, and K-S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst, J. Am. Chem. Soc., 134, (2012) 2186–2192.
DOI: 10.1021/ja209001d
Google Scholar
[47]
C. Ding, J. Shi, D. Wang, Z. Wang, N. Wang, G. Liu, F. Xiong, C. Li, Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias, Phys. Chem. Chem. Phys, 15 (2013) 4589-4595.
DOI: 10.1039/c3cp50295c
Google Scholar
[48]
K.L. Choy, Chemical vapor deposition of coatings, Prog. Mater. Sci., 48 (2003) 57–170.
Google Scholar
[49]
E. Alarco, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey and J.W. Ager, BiVO4 thin film photoanodes grown by chemical vapor deposition, Phys. Chem. Chem. Phys., 16 (2014) 1651–1657.
DOI: 10.1039/c3cp53904k
Google Scholar
[50]
K. -L. Choy, Special issue on aerosol-assisted chemical vapor deposition, Chem. Vap. Deposition, 12 (2006) 577–637.
DOI: 10.1002/cvde.200690021
Google Scholar
[51]
S.N.F. Mohd-Nasir, M.A. Mat-Teridi, M. Ebadi, J.S. Sagu, M.Y. Sulaiman, N. A-Ludin, M.A. Ibrahim, Influence of ethylene glycol on efficient photoelectrochemical activity of BiVO4 photoanode via AACVD, Phys. Status Solidi A, accepted, (2015).
DOI: 10.1002/pssa.201532622
Google Scholar
[52]
P. Chatchai, Y. Murakami, S. -ya. Kishioka, A.Y. Nosaka, and Y. Nosaka, Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation, Electrochim. Acta, 54 (2009) 1147–1152.
DOI: 10.1016/j.electacta.2008.08.058
Google Scholar
[53]
K. Sayama, N. Wang, Y. Miseki, H. Kusama, N. Onozawa-Komatsuzaki, H. Sugihara, Effect of carbonate ions on the photooxidation of water over porous BiVO4 film photoelectrode under visible light, Chem. Soc. Japan, 39 (2010) 17-19.
DOI: 10.1246/cl.2010.17
Google Scholar
[54]
W. Luo, Z. Wang, L. Wan, Z. Li, T. Yu, Z. Zou, Synthesis, growth mechanism and photoelectrochemical properties of BiVO4 microcrystal electrodes, J. Phys. D. Appl. Phys., 43 (2010) 405402.
DOI: 10.1088/0022-3727/43/40/405402
Google Scholar
[55]
B. Zhou, J. Qu, X. Zhao, and H. Liu, Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode, J. Environ. Sci., 23 (2011) 151–159.
DOI: 10.1016/s1001-0742(10)60387-7
Google Scholar
[56]
T.H. Jeon, W. Choi, H. Park, Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes water oxidation of BiVO4 electrodes, Phys. Chem. Chem. Phys., 13 (2011) 21392–21401.
DOI: 10.1039/c1cp23135a
Google Scholar
[57]
R. Saito, Y. Miseki and K. Sayama, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte, Chem. Commun., 48 (2012) 3833–3835.
DOI: 10.1039/c2cc30713h
Google Scholar
[58]
J. Jiang, M. Wang, R. Li, L. Ma, and L. Guo, Fabricating CdS/BiVO4 and BiVO4/CdS heterostructured film photoelectrodes for photoelectrochemical applications, Int. J. Hydrog. Energy, 38 (2013) 13069–13076.
DOI: 10.1016/j.ijhydene.2013.03.057
Google Scholar
[59]
I. Fujimoto, N. Wang, R. Saito, Y. Miseki, T. Gunji, K. Sayama, WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting, Int. J. Hydrogen Energy, 39 (2013) 2454–2461.
DOI: 10.1016/j.ijhydene.2013.08.114
Google Scholar
[60]
S. Ho-Kimura, S.J.A. Moniz, A.D. Handoko and J. Tang, Enhanced photoelectrochemical water splitting by nanostructured BiVO4–TiO2 composite electrodes, J. Mater. Chem. A, 2 (2014) 3948-3953.
DOI: 10.1039/c3ta15268e
Google Scholar
[61]
K.P.S. Parmar, H.J. Kang, A. Bist, P. Dua, J.S. Jang and J.S. Lee, Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes, ChemSusChem., 5 (2012) 1926 – (1934).
DOI: 10.1002/cssc.201200254
Google Scholar
[62]
W.J. Jo, J. -W. Jang, K. -j. Kong, H.J. Kang, J.Y. Kim, H. Jun, K.P.S. Parmar and J.S. Lee, Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity, Angew. Chemie Int. Ed., 51 (2012) 3147–3151.
DOI: 10.1002/anie.201108276
Google Scholar
[63]
K. Zhang, X. -J. Shi, J.K. Kim, J.H. Park, Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers, Phys. Chem. Chem. Phys., 14 (2012) 11119–11124.
DOI: 10.1039/c2cp40991g
Google Scholar
[64]
J. Su, L. Guo, N. Bao, C. A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting, Nano Lett., 11 (2011) 1928–(1933).
DOI: 10.1021/nl2000743
Google Scholar
[65]
S.J. Hong, S. Lee, J.S. Jang and J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci., 4 (2011) 1781–1787.
DOI: 10.1039/c0ee00743a
Google Scholar
[66]
S. Xie, T. Zhai, Y. Zhu, W. Li, R. Qiu, Y. Tong, X. Lu, NiO decorated Mo: BiVO4 photoanode with enhanced visible-light photoelectrochemical activity, Int. J. Hydrogen Energy, 39 (2014) 4820–4827.
DOI: 10.1016/j.ijhydene.2014.01.072
Google Scholar
[67]
A. Iwase, Y. AH. Ng, Y. Ishiguro, A. Kudo and R. Amal, Reduced graphene oxide as a solid-state electron mediator in z-scheme photocatalytic water splitting under visible light, J. Am. Chem. Soc., 133 (2011) 11054–11057.
DOI: 10.1021/ja203296z
Google Scholar
[68]
S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner and A.M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy Environ. Sci., 4 (2011) 5028-5034.
DOI: 10.1039/c1ee02444b
Google Scholar
[69]
F.F. Abdi and R. van de Krol, Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes, J. Phys. Chem. C, 116 (2012) 9398-9404.
DOI: 10.1021/jp3007552
Google Scholar
[70]
S.K. Pilli, T.G. Deutsch, T.E. Furtak, J.A. Turner, L.D. Brown and A.M. Herring, Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2–BiVO4 electrodes, Phys. Chem. Chem. Phys., 14 (2012).
DOI: 10.1039/c2cp40673j
Google Scholar
[71]
M. Zhou, J. Bao, W. Bi, Y. Zeng, R. Zhu, M. Tao and Y. Xie, Efficient water splitting via a heteroepitaxial BiVO4 photoelectrode decorated with Co-Pi catalysts, ChemSusChem., 5 (2012) 1420-1425.
DOI: 10.1002/cssc.201200287
Google Scholar