Accelerator-Based Nuclear Techniques for Processing and Characterization of Oxide Semiconductors for Solar Energy Conversion

Article Preview

Abstract:

Accelerator-based nuclear techniques are an important tool for the modification and characterization of surfaces in general, down to a depth of around one micrometer. For oxide semiconductors used in solar energy conversion, the surface plays a critical role in facilitating the use of solar photon energy to obtain hydrogen via spontaneous water oxidation. For such a process, the required surface properties are complex and include specific chemical composition, as well as the defect composition, and both of these characteristics may be augmented using accelerator-based nuclear techniques. The targeted modification of surfaces makes use of ion implantation for changing the chemical composition, and ion irradiation for changing the defect structure. The defect formation is a very complex process, and in this work we placed more emphasis on this aspect. We attempted to present the defect formation under the irradiation of ion beams at the two extremes: formation of extensive and large-scale cluster defects; and formation of small-scale point defects. In addition, we review the main characterization techniques based on ion beams, with examples from work carried out on semiconductors and oxide semiconductors.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 253)

Pages:

59-142

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J Nowotny, Oxide Semiconductors for Solar Energy Conversion, CRC, Boca Raton, (2012).

Google Scholar

[2] G. Dearnaley, J. H. Freeman, R. S. Nelson, J. Stephen, Ion Implantation, American Elsevier Publishing Co. New York, (1973).

Google Scholar

[3] S Azimi, J Song, Z Y Dang, H D Liang and M B H Breese, J. Micromech. Microeng. 22, 113001, (2012).

Google Scholar

[4] A. Markwitz, D.A. Carder, T. Hopf, J. Kennedy, T.K. Chan, A. Mucklich, T. Osipowicz, , NIM B 373, 199, (2012).

Google Scholar

[5] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, Y. Ichihashi, F. Goto, M. Ishida, T. Sasaki, M. Anpo, J. Synchrotron Rad. 8, 569, (2001).

DOI: 10.1107/s090904950001712x

Google Scholar

[6] M. Takeuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed 38, 1261, (2012).

Google Scholar

[7] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, Renewable and Sustainable Energy Rev. 11, 401, (2007).

Google Scholar

[8] A. L. Stepanov, Rev. Adv. Mat. Sci. 30, 150, (2012).

Google Scholar

[9] E. Alves, N. Franco, N. P. Barradas, B. Nunes, J. Lopes, A. Cavaleiro, M. Torrell, L. Cunha, F. Vaz, NIM B 272, 61, (1012).

Google Scholar

[10] C-L. Jia, Z-N. Wei, R. Zhou, NIM B 313, 50, (2013).

Google Scholar

[11] J. F. Ziegler, NIM B 219-220, 1027, (2004).

Google Scholar

[12] J.R. Tesmer, M. Nastasi, 83, Handbook of Modern Ion Beam Materials Analysis, MRS, Pittsburgh (1995).

Google Scholar

[13] M.B.H. Breese, E.J. Teo and L. Huang, NIM B 260, 288, (2007).

Google Scholar

[14] L. C. Fledman, J. W. Mayer, S. T. Picraux, Materials Analysis, Accademic Press NY, (1985).

Google Scholar

[15] D. D. Cohen, E. Clayton, Academic Press, Sydney, Ch 5, (1989).

Google Scholar

[16] A. Uedono, S. Ishibashi, T. Ohdaira, R. Suzuki, J. Cryst. Growth 311, 3075, (2009).

Google Scholar

[17] T. Yamaki, T. Umebayashi, T. Sumita, S. Yamamoto, M. Maekawa, A. Kawasuso, H. Itoh, NIM B 206, 254, (2003).

Google Scholar

[18] M. Mayer, Report IPP 9/113, Max-Plank Institut fur Plasmaphysik, Garching, Germany (1997).

Google Scholar

[19] M.B.H. Breese, J. Appl. Phys. 74(6) (1993) 3789-3799.

Google Scholar

[20] J.F. Ziegler, J.B. Biersack, U. Littmark, The Stooping and Range of Ions in Solids, Pergamon, New York, (1985).

Google Scholar

[21] [G.P. Summers, E.A. Burke, C.J. Dale, E.A. Wolicki, P.W. Marshall, and M.A. Gehlhausen, IEEE TNS, NS-34, 1134 (1987).

Google Scholar

[22] A.B. Cambell, A.R. Knudson, W.J. Stapor, G.P. Summers, M.A. Xapsos, M. Jessee, T. Palmer, R. Zuleeg, and C.J. Dale, Particle damage effects in GaAs JFET test structures, IEEE TNS, NS-33, 1435 (1986).

DOI: 10.1109/tns.1986.4334619

Google Scholar

[23] G.P. Summers, E.A. Burke, P. Shapiro, S.R. Messenger, and R.J. Walters, IEEE TNS, NS-40, 1372 (1993).

Google Scholar

[24] S.R. Messenger, E.A. Burke, G.P. Summers, M.A. Xapsos, R.J. Walters, E.M. Jackson, B.D. Weaver, IEEE TNS NS-46, No. 6, Dec 1999, 1595 – 1602.

DOI: 10.1109/23.819126

Google Scholar

[25] M. Huhtinen, Nucl. Instr. Meth. Phys. Res. A 491 (2002) 194-215.

Google Scholar

[26] S.M. Sze, Physics of Semiconductor Devices, 2nd Edition, Wiley, New York (1981).

Google Scholar

[27] E. Chason, S.T. Picraux, J.M. Poate, J.O. Borland, M.I. Current, T. Diaz de la Rubia, D.J. Eaglesham, O.W. Holland, M.E. Law, C.W. Magee, J.W. Mayer, J. Melngailis, and A.F. Tasch, Applied physics review, J. Appl. Phys. 81 (1997) 6513.

DOI: 10.1063/1.365193

Google Scholar

[28] L. Pelaz, L.A. Marques, M. Aboy, P. Lopez, and I. Santoz, Eur. Phys. J. B72 (2009) 323.

Google Scholar

[29] C. Leroy and P.G. Ranciota, Rep. Prog. Phys. 70 (2007) 493.

Google Scholar

[30] Z. Pastuovic, M. Jaksic, G. Kalinka, M. Novak, A. Simon, IEEE Trans. Nucl. Sci. NS-56, (2009) 2457.

Google Scholar

[31] Z. Pastuovic, E. Vittone, I. Capan, M. Jaksic, Appl. Phys. Lett. 98, (2011) 092101.

Google Scholar

[32] I. Zamboni, Z. Pastuovic, and M. Jaksic, Diam. Relat. Mater. 31, (2013) 65.

Google Scholar

[33] N. Iwamoto, B.C. Johnson, N. Hoshino, M. Ito, H. Tsuchida, K. Kojima and T. Ohshima, J. Appl. Phys. 113 (2013) 143714.

Google Scholar

[34] T. Ohshima, S. Sato, M. Imaizumi, T. Nakamura, T. Sugaya, K. Matsubara, S. Niki, Solar Energy Materials & Solar Cells 108, (2013) 263.

DOI: 10.1016/j.solmat.2012.09.027

Google Scholar

[35] Z. Pastuovic, I. Capan, R. Siegele, R. Jacimovic, J. Forneris, D.D. Cohen and E. Vittone, Nucl. Instr. Meth. Phys. Res. B 332, (2014) 298.

Google Scholar

[36] N. Dharmarasu, M. Yamaguchi, J.C. Bourgoin, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi and S. Matsuda, Majority- and minority-carrier deep traps in proton-irradiated InGaAs space solar cells, Appl. Phys. Lett. 81(1), (2002) 64.

DOI: 10.1063/1.1491005

Google Scholar

[37] K.K. Lee, T. Ohshima, A. Saint, T. Kamiya, D.N. Jamieson, H. Itoh, Nucl. Instr. Methods Phys. Res. B 210 (2003) 489.

Google Scholar

[38] F. Nava, E. Vittone, P. Vanni, G. Verzellesi, P.G. Fuochi, C. Lanzierif, M. Glaser, Nucl. Instr. Meth. Phys. Res. A 505, (2003) 645.

Google Scholar

[39] A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, S. Ferrero and F. Giorgis, J. Appl. Phys. 98, (2005) 053706.

Google Scholar

[40] F. Nava, A. Castaldini, A. Cavallini, P. Errani and V. Cindro, IEEE TNS NS-53 (5), (2006) 2977.

Google Scholar

[41] F. Roccaforte, S. Libertino, V. Ranieri, A. Ruggiero, V. Massimino and L. Calcagno, J. Appl. Phys. 99, (2006) 013515.

Google Scholar

[42] V.A.J. van Lint, T.M. Flanagan, R.E. Leadon, J.A. Naber, V.C. Rogers: Mechanism of radiation effects in electronic materials, John Wiley & Sons, (1990).

Google Scholar

[43] Y. Shi, D.X. Shen, F.M. Wu, K.J. Cheng, J. Appl. Phys. 67 (1990) 1116.

Google Scholar

[44] B.R. Gossick, J. Appl. Phys. 30 (1959) 1214.

Google Scholar

[45] M.A. Green, J. Appl. Phys. 67 (1990) 2944.

Google Scholar

[46] G. Watkins, Gordon and Breach Science Publishers S.A., Yverdon (CH), 2nd edition, (1992).

Google Scholar

[47] A.O. Evwaraye, J. Appl. Phys. 47(9) (1976) 3776–3780.

Google Scholar

[48] A. Hallen, N. Keskitalo, F. Masszi, V. Nagl, J. App. Phys. 79 (1996) 3906–3914.

Google Scholar

[49] B.G. Svensson, J.L. Lindstrom, Phys. Rev. B 34(12) (1986) 8709–8717.

Google Scholar

[50] L.C. Kimerling, H.M. DeAngelis, J.W. Diebold, Solid State Communications 16 (1975) 171–174.

Google Scholar

[51] S.D. Brotherton, P. Bradley, J. Appl. Phys. 53(8) (1982) 5720–5732.

Google Scholar

[52] R. Nipoti, C. Donolato, D. Govoni, P. Rossi, G.P. Egeni, V. Rudello, Nucl. Instr. Meth. Phys. Res. B 136–138 (1998) 1340–1344.

Google Scholar

[53] J.F. Barbot, E. Ntsoenzok, C. Blanchard, J. Vernois, D.B. Isabelle, Nucl. Instr. Meth. Phys. Res. B 95 (1995) 213 – 218.

Google Scholar

[54] D.V. Lang, J. Appl. Phys. 45 (1974) 3023.

Google Scholar

[55] J. L. Benton, J. Cryst. Growth 106 (1990) 116.

Google Scholar

[56] Y. Zohta, M.O. Watanabe, J. Appl. Phys. 53 (1981) 1809.

Google Scholar

[57] L. Dobaczewski, A.R. Peaker, K. Bonde Nielsen, J. Appl. Phys. 96 (2004) 4689.

Google Scholar

[58] S. Onoda, T. Hirao, J.S. Laird, H. Mori, H. Itoh, T. Wakasa, T. Okamoto, Y. Koizumi, Nucl. Instr. Meth. Phys. Res. B 206 (2003) 444–447.

Google Scholar

[59] S. Onoda, T. Hirao, J.S. Laird, H. Mori, H. Itoh, T. Wakasa, T. Okamoto, Y. Koizumi, Nucl. Instr. Meth. Phys. Res. B 210 (2003) 232–236.

Google Scholar

[60] A. Simon, G. Kalinka, M. Jakšić, Ž. Pastuović, M. Novak, A.Z. Kiss, Nucl. Instr. Meth. Phys. Res. B 260 (2007) 304–308.

Google Scholar

[61] F. Fizzoti, E. Colombo, A. Lo Giudice, C. Manfredotti, Z. Medunić, M. Jakšić, E. Vittone, Nucl. Instr. Meth. Phys. Res. B 260 (2007) 259–263.

Google Scholar

[62] E. Vittone, Z. Pastuovic, M.B.H. Breese, J. Garcia Lopez, M. Jaksic, J. Raisanen, R. Siegele, A. Simon, G. Vizkelethy, Nucl. Instr. Meth. Phys. Res. B xxx (2016) xxx (accepted Dec2015). http: /dx. doi. org/10. 1016/j. nimb. 2016. 01. 030.

DOI: 10.1016/j.nimb.2016.01.030

Google Scholar

[63] E. Vittone, F. Fizzotti, A. LoGiudice, C. Paolini, C. Manfredotti, Nucl. Instr. Meth. Phys. Res. B 161–163 (1999) 446–451.

Google Scholar

[64] E. Vittone, Nucl. Instr. Meth. Phys. Res. B 219–220 (2004) 1043–1050.

Google Scholar

[65] J.B. Gunn, Solid State Electronics 7 (1964) 739–742.

Google Scholar

[66] L. Grassi, J. Forneris, D. Torresi, L. Acosta, A. Di Pietro, P. Figuera, Nucl. Instr. Meth. Phys. Res. A 767 (2014) 99.

Google Scholar

[67] T.H. Prettyman, Nucl. Instr. Meth. Phys. Res. A 422 (1999) 232-237.

Google Scholar

[68] W. Shockley, W.T. Read, Phys. Rev. 87 (1952) 835.

Google Scholar

[69] M.T. Robinson, I.M. Torrens, Phys. Rev. B 9 (1974) 5008.

Google Scholar

[70] M.B.H. Breese, E. Vittone, G. Vizkelethy, P.J. Sellin, Nucl. Instr. Meth. Phys. Res. B 264 (2007) 345.

Google Scholar

[71] M. Martini, T.W. Raudorf, W.R. Scott, J.C. Waddington, IEEE TNS, NS-22 (1975) 145.

Google Scholar

[72] W. Shockley, J. Appl. Phys. 9 (1938) 635.

Google Scholar

[73] E. Amaldi, O. D'Agostino, E. Fermi, B. Pontecorvo, F. Rasetti, E. Segre, Artificial radioactivity produced by neutron bombardment – II, Proc. R. Soc. Lond. A. Math. Phys. Sci. A 149 (1935) 522.

DOI: 10.1098/rspa.1935.0080

Google Scholar

[74] S. R Messenger, E.A. Burke, G.P. Summers, R.J. Walters, IEEE TNS NS-51 No. 6, Dec 2004, 3201–3206.

Google Scholar

[75] P. Leveque, H. Kortegaard Nielsen, P. Pellegrino, A. Hallen, B.G. Svensson, A. Yu. Kuznetsov, J. Wong-Leung, C. Jagadish, and V. Privitera, J. Appl. Phys. 93, 871 (2003).

Google Scholar

[76] O. Yastrubchak, T. Wosinski, A. Makosa, T. Figielski, and A.L. Toth, Physica B 308–310 (2001) 757.

Google Scholar

[77] I. Kovačević, V.P. Markevich, I.D. Hawkins, B. Pivac and A.R. Peaker, J. Phys. Condens. Matter 17 (2005) S2229.

DOI: 10.1088/0953-8984/17/22/010

Google Scholar

[78] R.M. Fleming, C.H. Seager, D.V. Lang, E. Bilejec, J.M. Campbell, J. Appl. Phys. 104 (2008) 083702.

Google Scholar

[79] G.D. Watkins, J.W. Corbett, Phys. Rev. 134 (1964) A1359.

Google Scholar

[80] I. Capan, V. Borjanović, and B. Pivac, Solar Energy Materials and Solar Cells 91 (2007) 931.

DOI: 10.1016/j.solmat.2007.02.011

Google Scholar

[81] E.V. Monakhov, J. Wong-Leung, A. Yu. Kuznetsov, C. Jagadish, and B.G. Svensson, Phys. Rev. B 65 (2002) 245201.

Google Scholar

[82] L. Vines, E.V. Monakhov, J. Jensen, A. Yu. Kuznetsov, and B.G. Svensson, Phys. Rev. B 79 (2009) 075206.

Google Scholar

[83] B.G. Svensson, C. Jagadish, A. Hallen, J. Lalita, Phys. Rev. B 55(16) (1997) 10498–10507.

Google Scholar

[84] V.P. Markevich, I.D. Hawkins, A.R. Peaker, K.V. Emtsev, V.V. Emtsev, V.V. Litvinov, L.I. Murin, L. Dobaczewski, Phys. Rev. B 70 (2004) 235213.

DOI: 10.1103/physrevb.70.235213

Google Scholar

[85] I. Capan, Z. Pastuovic, R. Siegele, R. Jacimovic, Nucl. Instr. Meth. Phys. Res. B xxx (2016) xxx. http: /dx. doi. org/10. 1016/j. nimb. 2015. 12. 039.

Google Scholar

[86] L. Palmershofer and J. Reisinger, J. Appl. Phys. 72 (6), 1992, 2167–2173.

Google Scholar

[87] T.A. Belykh, A.L. Gorodishchensky, L.A. Kazak, V.E. Semyannikov, A.R. Urmanov, Nucl. Instr. Meth. Phys. Res. B 51 (1990) 242-246.

Google Scholar

[88] P. Hazdra, V. Hašlar, J. Vobecky, Nucl. Instr. Meth. Phys. Res. B 96 (1995) 104.

Google Scholar

[89] R. Wunstorf: Systematische Untersuchungen zur Strahlenresistenz von Silizium-Detektoren fuer die Vervendung in Hochenergiephysik-Experimenten, PhD Dissertation, Universitaet Hamburg, Germany (1992).

Google Scholar