Low-Dimensional Gadolinium Polyselenides: Thermodynamic Modelling, Crystals Growing and Crystal Structure

Article Preview

Abstract:

By thermodynamic modelling of the Gd—Se—I system, the optimal growth conditions for crystalline GdSe1.85 and GdSe1.80 gadolinium polyselenides, whose existence was proved in our previous works, have been determined. Based on the obtained information, the GdSe1.85 and GdSe1.80 crystals are grown by the vapor transport technique using iodine as the transport agent. The crystals produced are identified by microprobe and powder Xray diffraction analysis. It is shown that in case of GdSe1.85 the crystal structure is typical for rare-earth polychalcogenide structures, but the unit cell represents metrically a previously unknown type.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 257)

Pages:

183-186

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Bootcher, Angew. Chem. 6 (1988) 781-894.

Google Scholar

[2] P. Bootcher, Th. Doert, H. Arnold, R. Tamazyan, Z. Kristallogr. 215 (2000) 246-53.

Google Scholar

[3] B.P.T. Fokwa, Th. Doert, P. Bootcher, Z. Anorg. Allg. Chem. 628 (2002) 2168.

Google Scholar

[4] Ch. Michioka, K. Fukushima, K. Suzuki, K. Yoshimura, J. Phys. Chem. Solids 66 (2005) 1579-1582.

Google Scholar

[5] A. van der Lee, L.M. Hoistad, M. Evain, Chem. Mater. 9 (1997) 218-226.

Google Scholar

[6] T.P. Chusova, L.N. Zelenina, I.G. Vasilyeva, C. Graf, Th. Doert, J. Alloys Comp. 452 (2008) 94-98.

DOI: 10.1016/j.jallcom.2006.12.162

Google Scholar

[7] L.N. Zelenina, T.P. Chusova, I.G. Vasilyeva, J. Chem. Therm. 90 (2015) 122-128.

Google Scholar

[8] A. Kopun, Abstract of a thesis ²Heat capacity, entropy, effective Gibbs energy and enthalpy of rare earth metal selenides under standard conditions², Kiev, (2005).

Google Scholar

[9] S.A. Mucklejohn, J. Phys. D: Appl. Phys 44 (2011) 224010.

Google Scholar

[10] E.L. Osina, V.S. Yungman, L.N. Gorokhov, Electronic J. Researched in Russia 4 (2000) 124.

Google Scholar

[11] H.P. Cordfunke, R.J.M. Konigs, Therm. Acta 375 (2001) 17-50.

Google Scholar

[12] L.V. Gurvich, IVTANTHERMO Automated data system on thermodynamic properties of substances, Nauka, Moscow, 1983 (in Russian).

Google Scholar

[13] S.V. Sysoev, A.A. Titov, and L.I. Chernyavskii, in: Fundamentals of the Processes of Chemical Deposition of Films and Structures for Nanoelectronics, T.P. Smirnova (Eds. ) (in Russian), Izd. SO RAN, Novosibirsk (2013).

Google Scholar

[14] L.N. Zelenina, T.P. Chusova, N.V. Podberezskaya, D.A. Piryazev , I.V. Korolkov, Journal of Structural Chemistry 56 (2015) 673-679.

DOI: 10.1134/s0022476615040101

Google Scholar

[15] Powder Diffraction File, release 2010, International Centre for Diffraction Data, Pennsylvania, USA.

Google Scholar

[16] Bruker AXS Inc. (2004) APEX2 (Version 1. 08), SAINT (Version 7. 03), SADABS (Version 2. 11) fnd SHELXTL (Version 6. 12) Bruker Advanced X-ray solution, Madison, USA.

Google Scholar

[17] F.A. Bannister, M.N. Hey, Mintral. Mag. B23 (1934) 587-597.

Google Scholar

[18] M. Elander, G. Hagg, A. Westren, Ark. Kem. Miner. Geol. 12B (1935) 6-9.

Google Scholar