[1]
V. Jaccarino, G.K. Wertheim, J.H. Wernick, L.R. Walker, and S. Arajs, Paramagnetic excited state of FeSi, Phys. Rev. 160 (1967) 476–482.
DOI: 10.1103/physrev.160.476
Google Scholar
[2]
D. Mandrus, J.L. Sarrao, A. Migliori, J.D. Thompson, and Z. Fisk, Thermodynamics of FeSi, Phys. Rev. B 51 (1995) 4763–4767.
DOI: 10.1103/physrevb.51.4763
Google Scholar
[3]
Z. Schlesinger, Z. Fisk, H. -T. Zhang, M.B. Maple, J.F. DiTusa, and G. Aeppli, Unconventional charge gap formation in FeSi, Phys. Rev. Lett. 71 (1993) 1748.
DOI: 10.1103/physrevlett.71.1748
Google Scholar
[4]
K. Ishizaka, T. Kiss, T. Shimojima, et al., Ultraviolet laser photoemission spectroscopy of FeSi: Observation of a gap opening in density of states, Phys. Rev. B 72 (2005) 233202.
DOI: 10.1103/physrevb.72.233202
Google Scholar
[5]
O. Delaire, K. Marty, M.B. Stone, et al., Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder, Proc. Natl. Acad Sci. USA 108 (2011) 4725-4730.
DOI: 10.1073/pnas.1014869108
Google Scholar
[6]
P.P. Parshin, A.I. Chumakov, P.A. Alekseev, et al., Experimental observation of phonons as spectators in FeSi electronic gap formation, Phys. Rev. B 93 (2016) 081102(R).
DOI: 10.1103/physrevb.93.081102
Google Scholar
[7]
S. Krannich, Y. Sidis, D. Lamago, et al., Magnetic moments induce strong phonon renormalization in FeSi, Nature Comm. (2015) DOI: 10. 1038/ncomms9961.
DOI: 10.1038/ncomms9961
Google Scholar
[8]
A.A. Povzner, A.N. Filanovich, Phonon anharmonicity of iron monosilicide, Phys. B 456 (2015) 371-374.
DOI: 10.1016/j.physb.2014.09.028
Google Scholar
[9]
Elk. An all-electron FP-LAPW+lo code, available for free at http: /elk. sourceforge. net.
Google Scholar
[10]
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100 (2008) 136406.
DOI: 10.1103/physrevlett.102.039902
Google Scholar
[11]
L. Vočadlo, K.S. Knight, G.D. Price and I.G. Wood, Thermal expansion and crystal structure of FeSi between 4 and 1173 K determined by time-of-flight neutron powder diffraction, Phys. Chem. Miner. 29 (2002) 132.
DOI: 10.1007/s002690100202
Google Scholar
[12]
A.N. Filanovich, A.A. Povzner, Self-consistent modeling of thermal and elastic properties of unconventional superconductor PuCoGa5, Phys. B. 491 (2016) 17-21.
DOI: 10.1016/j.physb.2016.03.026
Google Scholar
[13]
M.N. Magomedov, On the Debye temperature and Grüneisen parameters for hexagonal close-packed crystals consisting of p-H2 and o-D2 molecules, Technical Phys. 58 (2013) 1297.
DOI: 10.1134/s106378421309020x
Google Scholar
[14]
A.E. Petrova, V.N. Kransnorussky, A.A. Shikov et al., Elastic, thermodynamic, and electronic properties of MnSi, FeSi, and CoSi, Phys. Rev. B 82 (2010) 155124.
DOI: 10.1103/physrevb.82.155124
Google Scholar
[15]
M. Neef, K. Doll and G. Zwicknagl, Structural, electronic, and magnetic properties of FeSi: hybrid functionals and non-local exchange, J. Phys.: Condens. Matter 18 (2006) 7437–7447.
DOI: 10.1088/0953-8984/18/31/035
Google Scholar
[16]
J. Acker, K. Bohmhammel, G.J.K. van den Berg et al., Thermodynamic properties of iron silicides FeSi and α-FeSi2, J. Chem. Thermodynamics, 31 (1999) 1523-1536.
DOI: 10.1006/jcht.1999.0550
Google Scholar
[17]
R.P. Krentsis, P.V. Gel'd, and G.I. Kalishevich, Izv. Vyssh. Uchebn. Zaved. Chernaya Met. 6 (1963) 161-168.
Google Scholar
[18]
A.A. Povzner A.G. Volkov, T.A. Nogovitsyna, Effects of pd-hybridization in strongly correlated insulator FeSi, J. Magn. Magn. Mater. 409 (2016) 1-5.
DOI: 10.1016/j.jmmm.2016.02.077
Google Scholar