Non-Schmid Phenomena in HCP Materials

Article Preview

Abstract:

The Schmid law says that yielding takes place when resolved shear stress on slip plane reaches the critical value. It is valid for wide variety of materials. However, it is well known that breaking of Schmid law takes place in bcc materials due to non-planar splitting of dislocation cores. The non-Schmid behavior is also possible for plastic deformation of fcc and hcp materials. Particularly, it is sometimes reported for deformation twinning. Present paper demonstrates the non-Schmid phenomena in hcp magnesium by means of computer simulations. We consider influence of non-glide stress components on motion of screw <a> dislocation as well as migration of twin boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 258)

Pages:

29-32

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Duesberry, V. Vitek: Acta Mater. Vol. 46 (1998) p.1481.

Google Scholar

[2] R. Gröger and V. Vitek: Acta Mater. Vol. 61 (2013) p.6362.

Google Scholar

[3] V. Vitek and V. Paidar, in:, Non-Planar dislocation cores: A Ubiquitous Phenomenon Affecting Mechanical Properties of Crystalline Materials, edited by J. P. Hirth, volume 14 of Dislocation in Solids, chapter 87, Elsevier (2008).

DOI: 10.1016/s1572-4859(07)00007-1

Google Scholar

[4] F.R.N. Nabarro: Phil. Mag. Vol. 14 (1966) p.861.

Google Scholar

[6] M.R. Barnett, Z. Keshavarz, A.G. Beer and X. Ma: Acta Mater. Vol. 56 (2008) p.5.

Google Scholar

[7] D. Ando, J. Koike and Y. Sutou : Acta Mater. Vol. 58 (2010) p.4316.

Google Scholar

[8] C.D. Barrett, H. El Kadiri and M.A. Tschopp: J. Mech. Phys. Solids Vol. 60 (2012) p. (2084).

Google Scholar

[9] L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein and C.N. Tome: Acta Mater. Vol. 57 (2009) p.6047.

Google Scholar

[10] J.W. Christian and S. Mahajan: Prog. Mater. Sci. Vol. 39 (1995) p.1.

Google Scholar

[11] A. Chapius, J.H. Driver: Acta Mater. Vol. 59 (2011) p. (1986).

Google Scholar

[12] D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali and M. Asta: Phys Rev B Vol. 73 (2006) p.024116.

Google Scholar

[13] S. Plimpton: J Comp Phys Vol. 117 (1995) p.1.

Google Scholar

[14] A. Stukowski: Modell. Simul. Mater. Sci. Eng. Vol. 18 (2010) p.015012.

Google Scholar

[15] J.P. Hirth and J. Lothe: Theory of dislocations (New York, McGraw-Hill, 1968).

Google Scholar

[16] J.A. Yasi, T. Nogaret, D.R. Trinkle, Y. Qi, L.G. Hector Jr and W.A. Curtin: Model. Simul. Mater. Sci. Eng. Vol. 17 (2009) p.055012.

DOI: 10.1088/0965-0393/17/5/055012

Google Scholar

[17] R.C. Pond, in: Line defects in interfaces, edited by F.R.N. Nabarro, volume 8 of Dislocations in Solids, chapter 38, North-Holland, Amsterdam (1989).

Google Scholar

[18] A. Serra and D.J. Bacon, Phil. Mag. A 73 (1996) p.333.

Google Scholar