Role of Localized Non-Equilibrium States in Nucleation of Plastic Deformation in Nanocrystalline Materials

Abstract:

Article Preview

A molecular dynamics simulation of the behavior of nanocrystalline materials in the fields of external influences was carried out. Crystallites of the fcc copper and bcc iron under different schemes of mechanical loading were investigated. Revealed specific localized non-equilibrium states served as the mechanism of formation and evolution of partial dislocations in fcc materials and twin growth in bcc materials. These non-equilibrium states were realized on the basis of local transformation of the martensitic type when the nearest surrounding of atoms – the centers of local rearrangements – changed according to the A-B(C) scheme, where A, B and C are types of crystal lattice. The bcc-fcc-bcc local rearrangements during twin growth were typical for bcc iron. The fcc-bcc-hcp and hcp-bcc-fcc local rearrangements during the partial dislocation movement were typical for fcc copper.

Info:

Periodical:

Solid State Phenomena (Volume 258)

Edited by:

Pavel Šandera

Pages:

21-24

Citation:

D. S. Kryzhevich et al., "Role of Localized Non-Equilibrium States in Nucleation of Plastic Deformation in Nanocrystalline Materials", Solid State Phenomena, Vol. 258, pp. 21-24, 2017

Online since:

December 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] K.P. Zol'nikov, T.Y. Uvarov and S.G. Psakh'e: Tech. Phys. Lett. Vol. 27 (2001), p.263.

[2] S.G. Psakhie, K.P. Zolnikov, D.S. Kryzhevich and A.G. Lipnitskiĭ: Tech. Phys. Lett. Vol. 32 (2006), p.101.

[3] A. Kanigel, J. Adler and E. Polturak: Int. J. Mod. Phys. Vol. 12 (2001), p.727.

[4] V. Sorkin, E. Polturak and J. Adler: Phys. Rev. B Vol. 68 (2003), p.174102.

[5] V. Sorkin, E. Polturak and J. Adler: Phys. Rev. B Vol. 68 (2003), p.174103.

[6] K.P. Zolnikov, S.G. Psakh'e and V.E. Panin: Journal of Physics F: Metal Physics Vol. 16 (1986), p.1145.

[7] S.G. Psakh'e, K.P. Zol'nikov and D.Y. Saraev: Tech. Phys. Lett. Vol. 24 (1998), p.99.

[8] D. Saraev and R.E. Miller: Acta Mater Vol. 54 (2006), p.33.

[9] J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton and S.M. Foiles: Phys. Rev. Lett. Vol. 87 (2001), p.165507.

[10] A.V. Korchuganov, K.P. Zolnikov, D.S. Kryzhevich, V.M. Chernov and S.G. Psakhie: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Vol. 352 (2015), p.39.

DOI: https://doi.org/10.1016/j.nimb.2014.11.095

[11] S.G. Psakhie, K.P. Zolnikov, L.F. Skorentsev, D.S. Kryzhevich and A.V. Abdrashitov: Physics of Plasmas Vol. 15 (2008), p.053701.

[12] S.G. Psakhie, K.P. Zolnikov, D.S. Kryzhevich, A.V. Zheleznyakov and V.M. Chernov: Physical Mesomechanics Vol. 12 (2009), p.20.

DOI: https://doi.org/10.1016/j.physme.2009.03.003

[13] S.G. Psakhie, D.S. Kryzhevich and K.P. Zolnikov: Tech. Phys. Lett. Vol. 38 (2012), p.634.

[14] A.V. Bolesta and V.M. Fomin: Physical Mesomechanics Vol. 12 (2009), p.73.

[15] S.G. Psakhie, K.P. Zolnikov, A.I. Dmitriev, D.S. Kryzhevich and A. Yu. Nikonov: Physical Mesomechanics Vol. 15 (2012), p.147.

[16] Y. Mishin, D. Farkas, M.J. Mehl and D.A. Papaconstantopoulos: Physical Review B Vol. 59 (1999), p.3393.

[17] M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun and M. Asta: Phil. Mag. Vol. 83 (2003), p.3977.

[18] H. Van Swygenhoven, M. Spaczer, A. Caro and D. Farkas: Phys Rev B Vol. 60 (1999), p.22.

[19] S.G. Psakhie, K.P. Zolnikov, D.S. Kryzhevich and A.G. Lipnitskii: Physics Letters A Vol. 349 (2006), p.509.