Role of Localized Non-Equilibrium States in Nucleation of Plastic Deformation in Nanocrystalline Materials

Article Preview

Abstract:

A molecular dynamics simulation of the behavior of nanocrystalline materials in the fields of external influences was carried out. Crystallites of the fcc copper and bcc iron under different schemes of mechanical loading were investigated. Revealed specific localized non-equilibrium states served as the mechanism of formation and evolution of partial dislocations in fcc materials and twin growth in bcc materials. These non-equilibrium states were realized on the basis of local transformation of the martensitic type when the nearest surrounding of atoms – the centers of local rearrangements – changed according to the A-B(C) scheme, where A, B and C are types of crystal lattice. The bcc-fcc-bcc local rearrangements during twin growth were typical for bcc iron. The fcc-bcc-hcp and hcp-bcc-fcc local rearrangements during the partial dislocation movement were typical for fcc copper.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 258)

Pages:

21-24

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.P. Zol'nikov, T.Y. Uvarov and S.G. Psakh'e: Tech. Phys. Lett. Vol. 27 (2001), p.263.

Google Scholar

[2] S.G. Psakhie, K.P. Zolnikov, D.S. Kryzhevich and A.G. Lipnitskiĭ: Tech. Phys. Lett. Vol. 32 (2006), p.101.

Google Scholar

[3] A. Kanigel, J. Adler and E. Polturak: Int. J. Mod. Phys. Vol. 12 (2001), p.727.

Google Scholar

[4] V. Sorkin, E. Polturak and J. Adler: Phys. Rev. B Vol. 68 (2003), p.174102.

Google Scholar

[5] V. Sorkin, E. Polturak and J. Adler: Phys. Rev. B Vol. 68 (2003), p.174103.

Google Scholar

[6] K.P. Zolnikov, S.G. Psakh'e and V.E. Panin: Journal of Physics F: Metal Physics Vol. 16 (1986), p.1145.

Google Scholar

[7] S.G. Psakh'e, K.P. Zol'nikov and D.Y. Saraev: Tech. Phys. Lett. Vol. 24 (1998), p.99.

Google Scholar

[8] D. Saraev and R.E. Miller: Acta Mater Vol. 54 (2006), p.33.

Google Scholar

[9] J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton and S.M. Foiles: Phys. Rev. Lett. Vol. 87 (2001), p.165507.

Google Scholar

[10] A.V. Korchuganov, K.P. Zolnikov, D.S. Kryzhevich, V.M. Chernov and S.G. Psakhie: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Vol. 352 (2015), p.39.

DOI: 10.1016/j.nimb.2014.11.095

Google Scholar

[11] S.G. Psakhie, K.P. Zolnikov, L.F. Skorentsev, D.S. Kryzhevich and A.V. Abdrashitov: Physics of Plasmas Vol. 15 (2008), p.053701.

DOI: 10.1063/1.2912447

Google Scholar

[12] S.G. Psakhie, K.P. Zolnikov, D.S. Kryzhevich, A.V. Zheleznyakov and V.M. Chernov: Physical Mesomechanics Vol. 12 (2009), p.20.

DOI: 10.1016/j.physme.2009.03.003

Google Scholar

[13] S.G. Psakhie, D.S. Kryzhevich and K.P. Zolnikov: Tech. Phys. Lett. Vol. 38 (2012), p.634.

Google Scholar

[14] A.V. Bolesta and V.M. Fomin: Physical Mesomechanics Vol. 12 (2009), p.73.

Google Scholar

[15] S.G. Psakhie, K.P. Zolnikov, A.I. Dmitriev, D.S. Kryzhevich and A. Yu. Nikonov: Physical Mesomechanics Vol. 15 (2012), p.147.

Google Scholar

[16] Y. Mishin, D. Farkas, M.J. Mehl and D.A. Papaconstantopoulos: Physical Review B Vol. 59 (1999), p.3393.

Google Scholar

[17] M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun and M. Asta: Phil. Mag. Vol. 83 (2003), p.3977.

Google Scholar

[18] H. Van Swygenhoven, M. Spaczer, A. Caro and D. Farkas: Phys Rev B Vol. 60 (1999), p.22.

Google Scholar

[19] S.G. Psakhie, K.P. Zolnikov, D.S. Kryzhevich and A.G. Lipnitskii: Physics Letters A Vol. 349 (2006), p.509.

Google Scholar