p.3
p.11
p.17
p.21
p.25
p.29
p.33
p.37
Role of Localized Non-Equilibrium States in Nucleation of Plastic Deformation in Nanocrystalline Materials
Abstract:
A molecular dynamics simulation of the behavior of nanocrystalline materials in the fields of external influences was carried out. Crystallites of the fcc copper and bcc iron under different schemes of mechanical loading were investigated. Revealed specific localized non-equilibrium states served as the mechanism of formation and evolution of partial dislocations in fcc materials and twin growth in bcc materials. These non-equilibrium states were realized on the basis of local transformation of the martensitic type when the nearest surrounding of atoms – the centers of local rearrangements – changed according to the A-B(C) scheme, where A, B and C are types of crystal lattice. The bcc-fcc-bcc local rearrangements during twin growth were typical for bcc iron. The fcc-bcc-hcp and hcp-bcc-fcc local rearrangements during the partial dislocation movement were typical for fcc copper.
Info:
Periodical:
Pages:
21-24
Citation:
Online since:
December 2016
Price:
Сopyright:
© 2017 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: