Development of Bond-Order Potentials for BCC Transition Metals

Article Preview

Abstract:

In this paper we present bond-order potentials (BOPs) based on the tight-binding method. The potentials have been developed for bcc non-magnetic metals of group V.B (V, Nb, Ta) and group VI.B (Cr, Mo, W) as well as for the ferromagnetic bcc iron. The testing of the transferability of BOPs involves energies of alternate structures, formation energies of vacancies and self-interstitials, transformation paths between different structures and phonon dispersion relations. An example of the application of these potentials is modeling of the structure and glide of 1⁄2<111> screw dislocations under the effect of applied shear and tensile/compressive stresses.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 258)

Pages:

3-10

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.G. Pettifor: Phys. Educ. Vol. 32 (1997), p.164.

Google Scholar

[2] A.P. Sutton, M.W. Finnis, D.G. Pettifor and Y. Ohta: J. Phys. C: Solid State Vol. 21 (1988), p.35.

Google Scholar

[3] M.W. Finnis: Prog. Mater. Sci. Vol 52 (2007), p.133.

Google Scholar

[4] M. Aoki, D. Nguyen-Manh, D.G. Pettifor and V. Vitek: Prog. Mater. Sci. Vol. 52 (2007), p.154.

Google Scholar

[5] T. Hammerschmidt, R. Drautz and D.G. Pettifor: Int. J. Mater. Res. Vol. 100 (2009), p.1479.

Google Scholar

[6] L. Pastewka, M. Mrovec, M. Moseler and P. Gumbsch: MRS Bull. Vol. 37 (2012), p.493.

DOI: 10.1557/mrs.2012.94

Google Scholar

[7] J.C. Slater and G.F. Koster: Phys. Rev. Vol. 94 (1954), p.1498.

Google Scholar

[8] A.P. Horsfield, A.M. Bratkovsky, M. Fearn, D.G. Pettifor and M. Aoki: Phys. Rev. B Vol. 53 (1996), p.12694.

DOI: 10.1103/physrevb.53.12694

Google Scholar

[9] E.C. Stoner: Proc. R. Soc. London A Vol. 165 (1939), p.372.

Google Scholar

[10] Y.S. Lin, M. Mrovec and V. Vitek: Model. Simul. Mater. Sci. Eng. Vol. 22 (2014), p.034002.

Google Scholar

[11] Y.S. Lin: PhD Thesis, University of Pennsylvania, Philadelphia (2015), p.231.

Google Scholar

[12] Y.S. Lin, M. Mrovec and V. Vitek: Phys. Rev. B (2016), in press.

Google Scholar

[13] D.G. Pettifor: Bonding and Structure of Molecules and Solids (Oxford University Press, 1995).

Google Scholar

[14] A. Urban, M. Reese, M. Mrovec, C. Elsässer and B. Meyer: Phys. Rev. B Vol. 84 (2011), p.155119.

Google Scholar

[15] D. Nguyen-Manh, D.G. Pettifor and V. Vitek: Phys. Rev. Lett. Vol. 85 (2000), p.4136.

Google Scholar

[16] L. Goodwin, A.J. Skinner and D.G. Pettifor: Europhys. Lett. Vol. 9 (1989), p.701.

Google Scholar

[17] Y.S. Lin, M. Mrovec and V. Vitek, Model. Simul. Mater. Sci. Eng. (2016), in press.

Google Scholar

[18] G.Q. Liu, D. Nguyen-Manh, B.G. Liu and D.G. Pettifor: Phys. Rev. B Vol. 71 (2005), p.4115.

Google Scholar

[19] M. Aoki and T. Kurokawa: J. Phys.: Condens. Matter Vol. 19 (2007), p.136228.

Google Scholar

[20] M. Sob and V. Vitek, in: Stability of Materials: NATO Advanced Science Institute, edited by A. Gonis, P. E. A. Turchi and J. Kudrnovsky, (Plenum Press, New York 1996), p.449.

Google Scholar

[21] V. Vitek and V. Paidar, in: Dislocations in Solids, edited by J. P. Hirth, Elsevier (2008), p.439.

Google Scholar

[22] H. Hasegawa and D.G. Pettifor: Phys. Rev. Lett. Vol. 50 (1983), p.130.

Google Scholar

[23] S.L. Frederiksen and K.W. Jacobsen: Philos. Mag. Vol. 83 (2003), p.365.

Google Scholar

[24] V. Paidar, L.G. Wang, M. Sob and V. Vitek: Model. Simul. Mater. Sci. Eng. Vol. 7 (1999), p.369.

Google Scholar

[25] M. Mrovec, R. Gröger, A.G. Bailey, D. NguyenManh, C. Elsässer and V. Vitek: Phys. Rev. B Vol. 75 (2007), p.4119.

Google Scholar

[26] H. Ullmaier: Landolt–Börstein NS III/25 (1991).

Google Scholar

[27] D. Nguyen-Manh, A.P. Horsfield and S.L. Dudarev: Phys. Rev. B Vol. 73 (2006) p.020101(R).

Google Scholar

[28] K. Kunc: Electronic Structure Dynamics and Quantum Structure Properties of Condensed Matter {Plenum Press 1985).

Google Scholar

[29] Y. Nakagawa and A. Woods: Phys. Rev. Lett. Vol. 11 (1963), p.271.

Google Scholar

[30] A.D.B. Woods and S.H. Chen: Solid State Comm. Vol. 2 (1964), p.233.

Google Scholar

[31] B. Brockhouse, H.E. Abou-helal and E.D. Hallman: Solid State Comm. Vol. 5 (1967), p.211.

Google Scholar

[32] R.A. Johnson: Phys. Rev. Vol. 134 (1964), p.1329.

Google Scholar

[33] D. Nguyen-Manh, S.L. Dudarev and A.P. Horsfield: J. Nucl. Mater. Vol. 367 (2007), p.257.

Google Scholar

[34] M. Cak, T. Hammerschmidt, J. Rogal, V. Vitek and R. Drautz: J. Phys. -Cond. Matter Vol. 26 (2014), p.10.

Google Scholar

[35] F. Willaime, C.C. Fu, M.C. Marinica and J. Dalla Torre: Nuclear Instruments & Methods in Physics Research B Vol. 228 (2005), p.92.

Google Scholar

[36] H. Schultz: Landolt-Börnstein NS III/25 (1991), p.115.

Google Scholar

[37] J.W. Christian: Metall. Trans. A Vol. 14 (1983), p.1237.

Google Scholar

[38] M.S. Duesbery, in: Dislocations in Solids, edited by F. R. N. Nabarro, (Elsevier 1989), p.67.

Google Scholar

[39] V. Vitek: Prog. Mater. Sci. Vol. 36 (1992), p.1.

Google Scholar

[40] S. Takeuchi: Radiation Effects and Defects in Solids Vol. 148 (1999), p.333.

Google Scholar

[41] C.R. Weinberger, B.L. Boyce and C.C. Battaile: Int. Mater. Rev. Vol. 58 (2013), p.296.

Google Scholar

[42] K. Ito and V. Vitek: Philos. Mag. A Vol. 81 (2001), p.1387.

Google Scholar

[43] R. Gröger, A.G. Bailey and V. Vitek: Acta Mater. Vol. 56 (2008), p.5401.

Google Scholar

[44] R. Gröger, V. Racherla, J.L. Bassani and V. Vitek: Acta Mater. Vol. 56 (2008), p.5412.

Google Scholar

[45] R. Gröger and V. Vitek: Acta Mater. Vol. 61 (2013), p.6362.

Google Scholar

[46] M.S. Daw and M.I. Baskes: Phys. Rev. B Vol. 29 (1984), p.6443.

Google Scholar

[47] M.W. Finnis and J.E. Sinclair: Philos. Mag. A Vol. 50 (1984), p.45.

Google Scholar