Temperature and Stress Dependence of Mobility of Screw Dislocation in BCC Iron

Article Preview

Abstract:

The Peierls stress and barrier of a screw dislocation in body-centered cubic iron at finite temperature is investigated by using the free energy gradient method. The Peierls barrier is shown to decrease from 12 to 5 meV per unit length of the Burgers vector with increasing temperature from 0 to 400 K. The entropy term of the Peierls barrier is estimated to be 0.2kB. The Peierls stress also decreases from 900 to 400 MPa with increasing temperature from 0 to 300 K. The change in the Peierls stress due to the entropic effect is larger than that of the Peierls barrier because of thermal softening.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 258)

Pages:

17-20

Citation:

Online since:

December 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Peierls: Proc. Phys. Soc. London Vol. 52 (1940) p.34.

Google Scholar

[2] F. R. N. Nabarro: Proc. Phys. Soc. London Vol. 59 (1947) p.256.

Google Scholar

[3] G. Lu, N. Kioussis, V. V. Bulatov, and E. Kaxiras: Phys. Rev. B Vol. 62 (2000) p.3099.

Google Scholar

[4] J. Li, C. Z. Wang, J. P. Chang, W. Cai, V. V. Bulatov, K. M. Ho, and S. Yip: Phys. Rev. B Vol. 70 (2004), p.104113.

Google Scholar

[5] L. Ventelon and F. Willaime: J. Computer-Aided. Mater. Des. Vol. 14, (2007), p.85.

Google Scholar

[6] D. Rodney and L. Proville: Phys. Rev. B Vol. 79 (2009), p.094108.

Google Scholar

[7] P. A. Gordon, T. Neeraj, Y. Li, and J. Li: Modelling Simul. Mater. Sci. Eng. Vol. 18 (2010), p.085008.

Google Scholar

[8] M. Itakura, H. Kaburaki, and M. Yamaguchi: Acta Mater. Vol. 60 (2012), p.3698.

Google Scholar

[9] L. Proville, D. Rodney, and M. C. Marinica: Nat. Mater. Vol. 11 (2012), p.845.

Google Scholar

[10] W. Cai, V. V. Bulatov, J. Chang, J. Li, and S. Yip: Philos. Mag. Vol. 83 (2003), p.539.

Google Scholar

[11] H. Mori, S. Ogata, J. Li, S. Akita, and Y. Nakayama: Phys. Rev. B Vol. 74 (2006), p.165418.

Google Scholar

[12] S. Ryu, K. Kang, and W. Cai: Proc. Natl. Acad. Sci. U.S. A Vol. 108(2011), p.5174.

Google Scholar

[13] E. Kaxiras and M. S. Duesbery: Phys. Rev. Lett. Vol. 70 (1993), p.3752.

Google Scholar

[14] H. Hirao, Y. Nagae, and M. Nagaoka: Chem. Phys. Lett. Vol. 348 (2001), p.350.

Google Scholar

[15] M. Nagaoka, Y. Nagae, Y. Koyano, and Y. Oishi: J. Phy. Chem. A Vol. 110 (2006), p.4555.

Google Scholar

[16] N. Takenaka, Y. Kitamura, Y. Koyano, T. Asada, and M. Nagaoka: Theor. Chem. Acc. Vol. 130 (2011), p.215.

Google Scholar

[17] J. Van Eerden, W. J. Briels, S. Harkema, and D. Feil: Chem. Phys. Lett. Vol. 164 (1989), p.370.

Google Scholar

[18] J. Kästner and W. Thiel: J. Chem. Phys. Vol. 123 (2005), p.144104.

Google Scholar

[19] L. Maragliano and E. Vanden-Eijnden: Chem. Phys. Lett. Vol. 426 (2006), p.168.

Google Scholar

[20] C. F. Abrams and E. Vanden-Eijnden: Proc. Natl. Acad. Sci. U.S. A Vol. 107 (2010), p.4961.

Google Scholar

[21] H. Chamati, N. I. Papanicolaou, Y. Mishin and D. A. Papaconstantopoulos: Surf. Sci. 600 (2006), p.1793.

Google Scholar

[22] H. Mori: Mater. Trans. Vol. 55 (2014), p.1531.

Google Scholar