Intelligent Robot Systems for Manipulation of Non-Rigid Objects

Article Preview

Abstract:

In this paper, methodologies are presented for the development of intelligent robot systems for the manipulation of linear and sheet like objects with low and/or very low bending rigidity. In the introduction the non-rigid objects are defined and classified considering their shape, bending rigidity and extensibility. The industrial and service applications of these systems are presented and the state of the art approaches for the manipulation of various categories of the non-rigid objects are presented. A brief State-of the-Art on the manipulation of the deformable objects with relatively low bending rigidity and presenting elastic behavior like foam, sheet metal is presented as well.The main part of the paper is devoted to the robotic manipulation of the sheet-like objects with very low rigidity such as fabrics and leather. Laboratory demonstrators accompany the presentation of the developed intelligent robotic systems for manipulation of non-rigid objects and the paper concludes with hints for the future directions of the research and development in robotic systems for handling non-rigid objects.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 260)

Pages:

20-29

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Jimenez, Survey on model based manipulation planning of deformable objects, Robotics and Computer-Integrated Manufacturing, 28(2012), 154–163.

DOI: 10.1016/j.rcim.2011.08.002

Google Scholar

[2] H. Delingette, Simulation of soft tissue deformation for medical applications, European Workshop on Deformable Object Manipulation, March 20th, 2014, Lyon, France.

Google Scholar

[3] M. Alric, F. Stephan, L. Sabourin, K. Subrin, G. Gogu, Y. Mezouar, Robotic solutions for meat cutting and handling, European Workshop on Deformable Object Manipulation, March 20th, 2014, Lyon, France.

DOI: 10.1108/ir-04-2013-346

Google Scholar

[4] T. Wada, S. Hirai, H. Mori, and S. Kawamura, Robust Manipulation of Deformable Objects Using Model Based Technique, H. Nagel and F. J. Perales López eds., Articulated Motion and Deformable Objects, 978-3-540-67912-7, Springer-Verlag, Lecture Note in Computer Science Vol. 1899, pp.1-14, 10. 1007/10722604_1, (2000).

DOI: 10.1007/10722604_1

Google Scholar

[5] H. Wakamatsu and S. Hirai, Static modeling of linear object deformable based on differential geometry, International Journal of Robotics Research, 23(3): 293-311, (2004).

DOI: 10.1177/0278364904041882

Google Scholar

[6] L. Bodenhagen, A. R. Fugl, A. Jordt, M. Willatzen, K. A. Andersen, M. M. Olsen, R. Koch, H. G. Petersen, and N. Krüger, An Adaptable Robot Vision System Performing Manipulation Actions With Flexible Objects, IEEE Transactions on Automation science and TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY (2014).

DOI: 10.1109/tase.2014.2320157

Google Scholar

[7] D. Navarro-Alarcon, Y. Liu, J. Guadalupe Romero and P. Li, On the visual deformation servoing of compliant objects: Uncalibrated control methods and experiments, The International Journal of Robotics Research published online 12 June 2014, DOI: 10. 1177/0278364914529355.

DOI: 10.1177/0278364914529355

Google Scholar

[8] C. N. Kapsalas, J. S. Sakellariou, P. N. Koustoumpardis, N. A. Aspragathos, On the vibration control of a flexible metallic beam handled by an industrial robot within an ARX-based synthetic environment, RAAD (2016).

DOI: 10.1007/978-3-319-49058-8_6

Google Scholar

[9] C. Gallet-Hanlyn, Multiple-use robots for composite part manufacturing, Jec Composites magazine, No 62-Febr. (2011).

Google Scholar

[10] A. Angerer, C. Ehinger, A. Hoffmann, W. Reif and G. Reinhart, Design of an Automation System for Preforming Processes in Aerospace Industries, IEEE International Conference on Automation Science and Engineering Trieste, Italy - August 24-27, (2011).

DOI: 10.1109/case.2011.6042411

Google Scholar

[11] C. Phillips-Graffli and D. Berenson, Path Planning and Execution for Deformable Objects Using a Voxel-Based Representation, European Workshop on Deformable Object Manipulation, March 20th, 2014, Lyon, France.

Google Scholar

[12] D. Berenson, Autonomous and Human-Robot Collaborative Manipulation of 1D and 2D Deformable Objects Without Modeling Deformation, European Workshop on Deformable Object Manipulation, March 20th, 2014, Lyon, France.

DOI: 10.1109/iros.2013.6697007

Google Scholar

[13] M. Saadat and P. Nan, Industrial applications of automatic manipulation of flexible materials, Industrial Robot: An International Journal Volume 29, Number 5, 2002, pp.434-442.

DOI: 10.1108/01439910210440255

Google Scholar

[14] B. Corves, J. Brinker, I. Prause, M. Hüsing, B. Abbas, H. Krieger, P. Kosse, AutoHD — Automated Handling and Draping of Reinforcing Textiles, in Mechanisms, Transmissions and Applications - Proceedings of the Third MeTrApp Conference 2015, Mechanisms and Machine Science 31, Springer, (2015).

DOI: 10.1007/978-3-319-17067-1_31

Google Scholar

[15] J.S. Dai, P.M. Taylor, P. Sanguanpiyapan, H. Lin, Trajectory and orientation analysis of the ironing process for robotic automation, International Journal of Clothing Science and Technology, Vol. 16 Iss ½ pp.215-226.

DOI: 10.1108/09556220410520496

Google Scholar

[16] Panagiotis N. Koustoumpardis, Nikos A. Aspragathos, Intelligent Robotic Sewing of Fabrics, Robotics and Computer-Integrated Manufacturing 30(1): 34 - 46, (2014).

DOI: 10.1016/j.rcim.2013.08.001

Google Scholar

[17] G. T. Zoumponos, N. A. Aspragathos, Fuzzy Logic Path Planning for the Robotic Placement of Fabrics on a Work Table, Robotics and Computer Integrated Manufacturing, Volume 24, Issue 2 (April 2008), pp.174-186.

DOI: 10.1016/j.rcim.2006.10.001

Google Scholar

[18] G. Zoumponos, N. Aspragathos, A strategy for the Robotic Folding of Fabrics with Machine Vision Feedback, Industrial Robot: An International Journal, Vol. 37 Issue : 3, 2010, pp.302-308.

DOI: 10.1108/01439911011037712

Google Scholar

[19] J. Schrimpf, M. Bjerkeng, M. Lind, and G. Mathisen, Model-based feed-forward and setpoint generation in a multi-robot sewing cell, in International Conference on Robotics and Automation (ICRA), (2015).

DOI: 10.1109/icra.2015.7139464

Google Scholar

[20] Y. Yamakawa, A. Namiki, M. Ishikawa, Motion planning for dynamic folding of a cloth with two high-speed robot hands and two high-speed sliders. In: Proceedings of IEEE International Conference on Robotics and Automation, p.5486–5491 (2011).

DOI: 10.1109/icra.2011.5979606

Google Scholar

[21] S. Miller, J. Van Den Berg, M. Fritz, T. Darrell, K. Goldberg, P. Abbeel, A geometric approach to robotic laundry folding. Int. J. Robot. Res. 31(2), 249–267 (2011).

DOI: 10.1177/0278364911430417

Google Scholar

[22] T. Oshima, T. Yoshimi, M. Mizukawa, Y. Ando, A study of towel folding by a robot arm— Spreading and vertex detection using image processing. In: Proceedings of 14th International Conference on Control, Automation and Systems (ICCAS'14), p.627–631 (2014).

DOI: 10.1109/iccas.2014.6987856

Google Scholar

[23] J. Stria, D. Prusa, V. Hlavac, L. Wagner, V. Petrik, P. Krsek, V. Smutny, Garment perception and its folding using a dual-arm robot. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, p.61–67 (2014).

DOI: 10.1109/iros.2014.6942541

Google Scholar

[24] D. Triantafyllou and N. A. Aspragathos, Definition and classification of primitives for the robotic unfolding of a piece of clothing, KEOD 2014, 6th International Conference on Knowledge Engineering and Ontology Development, 14 - 16 October 2014 / Italy, Rome.

DOI: 10.5220/0005155704170422

Google Scholar

[25] D. Triantafyllou, I. Mariolis, A. Kargakos, S. Malassiotis and N. Aspragathos. A geometric approach to robotic unfolding of garments. Robotics and Autonomous Systems 75: 233-243, (2016).

DOI: 10.1016/j.robot.2015.09.025

Google Scholar

[26] P. N. Koustoumpardis, K. I. Chatzilygeroudis, A. I. Synodinos and N. A. Aspragathos, Human Robot Collaboration for Folding Fabrics Based on Force/RGB-D Feedback. In Advances in Robot Design and Intelligent Control. Springer International Publishing, 2016, pages 235–243.

DOI: 10.1007/978-3-319-21290-6_24

Google Scholar

[27] P. N. Koustoumpardis, and N. A. Aspragathos. A review of gripping devices for fabric handling., International Conference on Intelligent Manipulation and Grasping IMG04, Genova, Italy, pp.229-234, July (2004).

Google Scholar

[28] K. S. M. Saharia, H. Sekib, Y. Kamiyac & M. Hikizu, Clothes Manipulation by Robot Grippers with Roller Fingertips, Advanced Robotics, Vol. 24, Issue 1-2, pp.139-158, (2010).

DOI: 10.1163/016918609x12586175245158

Google Scholar

[29] P. N. Koustoumpardis, K. X. Nastos and N. A. Aspragathos, Underactuated 3-finger robotic gripper for grasping fabrics. In Proceedings of the RAAD 2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (34043). (2014).

DOI: 10.1109/raad.2014.7002271

Google Scholar